The Future of Sustainable Technology

As the world continues to grow with new technologies, it’s important to create innovative solutions that lessen the negative impact this may have on the environment. Read below to learn how the benefits of sustainable, green, and clean technology can come into the picture.

What is Sustainable Technology?

[Many] instantiations of computing collectively consume as much as 10% of the world’s electricity today, and this number may grow to be more than 20% by the decade’s end,” N. Ahmad and J. Williams, “Green and Sustainable Computing” in Computer magazine, 2023.

Sustainable technology utilizes engineering to develop products and solutions intended to meet present day needs without impeding the future environment. By encouraging environmentally friendly behaviors, resource conservation, and decreased environmental damage, sustainable technology strives to address urgent environmental and social concerns.

This category of tech became a high priority to companies for the following reasons: to follow environmental legislation, lower waste-disposal costs, and improve their corporate image. Stated in a 1996 issue of IEEE Intelligent Systems, “Green engineering, an approach to product development that balances environmental compatibility with economic profitability, is fast becoming a necessary business practice.


Back to Top

How Sustainable Technology is Applied Today

Furthermore, the decisions behind what makes a product or development green occurs well before it reaches the public. According to IBM, “Technology makers play a role in green computing, as do the corporations, organizations, governments and individuals that use technology. From massive data centers instituting policies to reduce energy consumption to individuals choosing to not use screen savers, green IT is multi-faceted and involves myriad decisions at every level.”

A major advancement includes the decarbonization project, to which the majority of countries, including the US, have committed to. The goal of this initiative is to counterbalance all greenhouse gas emissions by 2050; in other words, reaching ‘net-zero.’ This works through a combination of reducing greenhouse gas emissions and absorbing carbon that’s already in the atmosphere. Making key aspects of our lives such as transportation, energy management, waste management, and agriculture more green can aid this effort.

Back to Top



Learn where sustainable technology is headed at the premiere IEEE SustainTech Expo and Leadership Forum. Sign up for Alerts!


Transportation and Mobility

Green tech and sustainability applications have great potential in the transportation sector because these newer technologies can focus on eliminating tailpipe emissions and can limit the negative effects vehicles have on climate change and pollution. According to the paper “Connected and Autonomous Electric Vehicles (CAEVs),” published in IT Professional, The powerful capabilities of connected and autonomous electric vehicles will make them a popular provider of a wide range of services, including mobility, sensing, computing, traffic control, and energy management.

Originally quoted from 2018, this statement still holds truth, as the number of battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) went up to 6.6 million in 2021 according to the 2022 Global EV Outlook Report. Furthermore, S&P Global Mobility anticipates that demand will continue to grow, as electric vehicles are projected to account for 40% of all new car purchases by 2030.

Hybrid and electric public transportation systems, such as trains and buses, also provide eco-friendly options for the infrastructure of cities. As more and more people opt for sustainable public transportation, the carbon footprint of the entire city shrinks; adding another benefit to this innovation is the potential savings in fuel costs, despite the resources needed upfront.

More Research:



Smart Grids and Energy Management

Smart grids have long led the way in green and sustainable applications. According to Greenly, they’ve changed the trajectory on how we use power. This starts by creating a system that manages energy flow by using insights from real time data. This is important because these systems are able to generate just enough power to meet public needs without waste, and saving costs.

It doesn’t stop there. Smart grids have other benefits besides real time monitoring, such as automated outage management and faster restoration. As stated by the National Electrical Manufacturers Association (NEMA), “Smart Grid can minimize interruptions during an extreme weather event by effectively managing unplanned outages as well as enhancing the restoration of energy infrastructure after a storm, lessening the impact on human life and critical infrastructure.

More Research:



Waste Management, Water Purification, and Desalination

Similarly, waste management and water purification systems must incorporate e-waste recycling (electronic waste) to keep dangerous electrical components and chemicals away from ecosystems. This process helps prevent precious metals and unusable components from electronics from damaging soil and water resources when they’re being dumped in landfills. On top of the positive environmental impact, this within itself, creates an industry. “…[P]ublic pressure to recycle e-waste is having a major impact, and e-waste recycling is now one of the fastest-growing industries in the world,” Jan Krikke, IT Professional.

Desalination systems are another common application for green and sustainable tech because engineers are able to design them to run on renewable or recovered energy. Recovered energy solutions capture energy from desalination processes and use it to continue desalinating the water.

More Research:



Food and Agriculture

Thanks to the sheer size of the food and agriculture sector, companies are able to significantly reduce energy footprints using green and sustainable technologies. Some of the most popular green technology and sustainable applications in agriculture include smart farming, water recycling, and optimized supply chains.

With the powers of IoT, smart farms can use communication technology to improve product quality and quantity, all while minimizing the need for human labor. Additionally, farms can recycle water by collecting the runoff from crops they’re watering and re-use it to irrigate their fields and greenhouses. This reduces water waste and the pollution of nearby rivers and lakes.

Growers and distributors can also use various technologies to trace food and ensure it isn’t wasted as it moves through the supply chain. Distributors also use green technology to optimize the timing of when cold foods get shipped and arrive at their destinations. This, in turn, reduces the energy burden created by the refrigerated vehicles that transport these goods.

More Research:



The Future of Sustainable Computing

The demand for green technology continues to increase. Especially when investments from today create a sustained environment for tomorrow. The green technology industry is expected to reach almost $62 billion (USD) by the year 2030 with an increasing compound rate of 20.8% according to Statista reports. Green technology has the potential to save companies money, improve productivity, and boost their brand image. This, according to Greenly, is because, “70% of shoppers believe brands should be sustainable and environmentally responsible, which poses a fantastic opportunity for brands willing to make the switch.”


Entering the Field

As always, a bright market forecast means a bright future for job opportunities. To aid computer scientists and engineers pursuing a path within sustainability, IEEE has put together resources, including forums, courses, conferences, and research.

IEEE forums relating to sustainability, environmental engineering, sustainable computing, EarthOS, and e-waste are available to the public. This is an opportunity to lean into the community and exchange ideas, all related to bettering our planet. Engage and network while learning and discovering more about sustainability.

Through IEEE’s Learning Network, a variety of courses are offered in an effort to further educate and train engineers with an interest in sustainable development. These courses include a multidisciplinary combination of sustainable project design, community engagement, supply chain management, and more.

Sharing different perspectives and connecting with those who want to make an impact through the powers of sustainability is vital. IEEE SustainTech is an event that will do just that. At its premiere event in 2024, the conference aims to open discussion on how technologies such as AI, IoT, autonomous systems, and electrification can improve our environment.

Learn more about IEEE SustainTech and what’s to come in 2024!


The Career Market

Not only do those who enter this field get to work with cutting edge technologies, they get to be a part of the wave that benefits the planet. The demand for jobs under the umbrella of an ‘environmental engineer’ is expected to grow 6% by 2032 as reported by the U.S. Bureau of Statistics. In general, a bachelor’s degree in environmental engineering or a related field can earn someone, on average, $96K (USD) upon entering the workforce according to the U.S. Bureau of Statistics. Below are a few examples of occupations that one can pursue. View estimates for other countries on



Renewable Energy Engineers

Renewable Energy Engineers create systems that generate low impact energy. This includes renewable energy resources such as windmills or solar panels. With the percentage of carbon dioxide emissions continuing to increase, these engineers use research, mathematics, design and testing to create technologies that sustain current day living without further damaging our future.


Environmental Data Scientists

Environmental Data Scientists analyze data related to key points of the environment such as air, water, soil, and ice. This information is then used to better understand the status of climate change, pollution, and public health. Scientists can then take these findings to create the reports that have the potential to influence law enforcement.


Waste Management Engineers

Waste Management Engineers manage the disposal and collection of waste, as well as recycling operations. Their goal is to ensure that waste materials are being handled in accordance with policy in areas such as landfills or how it’s transported.

Back to Top


Ethics & Standards

Ethics within sustainability involve nuanced challenges, and difficult decisions as more technology around it gets developed.

One of the primary concerns is the environmental cost of sourcing green technologies. For instance, a lot of green technology involves storing electricity inside batteries. Disposing of “green” power cells can harm the environment, putting dangerous chemicals into local ecosystems. Setting international standards and ethical best practices for the industry are needed to mitigate harm.

Many green initiatives also involve collecting data, which raises privacy concerns. For example, suppose a power company were to collect energy usage data from a factory. If the power company mishandled this information, the factory’s competition could use it to map out when it’s making products and estimate how many units it makes daily.

To meet these and other challenges, the IEEE Computer Society has established committees, guidelines, and data security standards that foster ethical green technology practices. For instance, IEEE 1922.2 improves the accuracy with which engineers can model the effect of generating electrical power.

IEEE has also taken aim at combating climate change and its associated effects. Using thoughtful technical solutions, IEEE helps lead technology innovators as they tackle a range of climate change-related issues. Explore and learn more about these efforts at the IEEE Climate Change website.

Back to Top


Experts within the Community


Prof. Dr. Luca Benini

In 2023, the IEEE Computer Society was proud to award those who have made a large impact within sustainable computing. The Edward J. McCluskey Award was given to Luca Benini, who has made groundbreaking contributions to energy-efficient chip designs such as ORIGAMI. Read more about him in this exclusive interview here.

Prof. Dr. Luca Benini holds the chair of digital Circuits and systems at ETHZ and is Full Professor at the Universita di Bologna. He received a PhD from Stanford University. He has been visiting professor at Stanford University, IMEC, EPFL. He has worked in Synopsys, Hewlett-Packard Labs and he served as chief architect in STmicroelectronics France. Prof. Dr.Benini’s research interests are in energy-​efficient parallel computing systems, smart sensing micro-​systems and machine learning hardware. Prof. Dr.Benini is the leader of the PULP (parallel-ultra-low power), an open source hardware platform based on the RISC-V ISA. In his early career, he made pioneering contributions to the fields of Networks-on-Chip, and design automation for low power digital circuits and systems. He has published more than 1000 peer-​reviewed papers and five books. He is a Fellow of the IEEE, of the ACM and a member of the Academia Europaea. He is the recipient of the 2016 IEEE CAS Mac Van Valkenburg award, the 2020 EDAA achievement Award and the 2020 ACM/IEEE A. Richard Newton Award.


Inside the Computer Society