IEEE Transactions on Computers

IEEE Transactions on Computers (TC) is a monthly publication that publishes research in such areas as computer organizations and architectures, digital devices, operating systems, and new and important applications and trends.

Expand your horizons with Colloquium, a monthly survey of abstracts from all CS transactions! Replaces OnlinePlus in January 2017.

From the December 2016 issue

Analytical Processor Performance and Power Modeling Using Micro-Architecture Independent Characteristics

By Sam Van den Steen, Stijn Eyerman, Sander De Pestel, Moncef Mechri, Trevor E. Carlson, David Black-Schaffer, Erik Hagersten, and Lieven Eeckhout

Featured article thumbnail imageOptimizing processors for (a) specific application(s) can substantially improve energy-efficiency. With the end of Dennard scaling, and the corresponding reduction in energy-efficiency gains from technology scaling, such approaches may become increasingly important. However, designing application-specific processors requires fast design space exploration tools to optimize for the targeted application(s). Analytical models can be a good fit for such design space exploration as they provide fast performance and power estimates and insight into the interaction between an application's characteristics and the micro-architecture of a processor. Unfortunately, prior analytical models for superscalar out-of-order processors require micro-architecture dependent inputs, such as cache miss rates, branch miss rates and memory-level parallelism. This requires profiling the applications for each cache and branch predictor configuration of interest, which is far more time-consuming than evaluating the analytical performance models. In this work we present a micro-architecture independent profiler and associated analytical models that allow us to produce performance and power estimates across a large superscalar out-of-order processor design space almost instantaneously. We show that using a micro-architecture independent profile leads to a speedup of 300$\times$ compared to detailed simulation for our evaluated design space. Over a large design space, the model has a 9.3 percent average error for performance and a 4.3 percent average error for power, compared to detailed cycle-level simulation. The model is able to accurately determine the optimal processor configuration for different applications under power or performance constraints, and provides insight into performance through cycle stacks.

download PDF View the PDF of this article      csdl View this issue in the digital library     TC Featured Article Youtube video  YouTube     TC Featured Article Youtube video in Chinese  YouTube (Chinese)     TC Featured Article on Youku  Youku     TC Featured Article Youtube video in Spanish  YouTube (Spanish)

Editorials and Announcements


  • Editor's pick of the year selection, announced in the July 2016 Editorial
  • Multimedia presentations of each monthly featured paper are now available in Chinese, English and Spanish
  • Get Your Journals as eBooks for Free



Guest Editorials

Reviewers List

Annual Index

New Essential Set

Access Recently Published TC Articles

RSS Subscribe to the RSS feed of latest TC content added to the digital library

Mail Sign up for the Transactions Connection newsletter.

A Message from Editor-in-Chief Paolo Montuschi


Importance of Coherence Protocols with Network Applications on Multi-Core Processors


Automated Generation of Performance and Dependability Models for the Assessment of Wireless Sensor Networks

Computing Now