• IEEE.org
  • IEEE CS Standards
  • Career Center
  • About Us
  • Subscribe to Newsletter

0

IEEE
CS Logo
  • MEMBERSHIP
  • CONFERENCES
  • PUBLICATIONS
  • EDUCATION & CAREER
  • VOLUNTEER
  • ABOUT
  • Join Us
CS Logo

0

IEEE Computer Society Logo
Sign up for our newsletter
FacebookTwitterLinkedInInstagramYoutube
IEEE COMPUTER SOCIETY
About UsBoard of GovernorsNewslettersPress RoomIEEE Support CenterContact Us
COMPUTING RESOURCES
Career CenterCourses & CertificationsWebinarsPodcastsTech NewsMembership
BUSINESS SOLUTIONS
Corporate PartnershipsConference Sponsorships & ExhibitsAdvertisingRecruitingDigital Library Institutional Subscriptions
DIGITAL LIBRARY
MagazinesJournalsConference ProceedingsVideo LibraryLibrarian Resources
COMMUNITY RESOURCES
GovernanceConference OrganizersAuthorsChaptersCommunities
POLICIES
PrivacyAccessibility StatementIEEE Nondiscrimination PolicyIEEE Ethics ReportingXML Sitemap

Copyright 2025 IEEE - All rights reserved. A public charity, IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity.

  • Home
  • /Publications
  • /Tech News
  • /Research
  • Home
  • / ...
  • /Tech News
  • /Research

Scientists discover way to make quantum states last 10,000 times longer

News Provided By: Phys.org

On 13 August 2020, Science published the discovery of a simple modification that allows quantum systems to stay coherent 10,000 times longer. The study was executed by a team of scientists from the University of Chicago's Pritzker School of Molecular Engineering. Although it was focused on a class of quantum systems called solid-state qubits, the scientists believe their discovery will be useful for a variety of systems. This breakthrough has enabled new research opportunities that were previously thought impractical, or even impossible. The complexity of quantum states make conducting research particularly difficult, and isolating the system has proven to be complicated, and adjustments to the materials is costly. Explore how the University of Chicago's Pritzker School of Molecular Engineering "tricked" the quantum system into thinking it didn't experience the noise, and how that revolutionized quantum communication, computing, and sensing for generations to come. Read the full article here!
LATEST NEWS
Shaping the Future of HPC through Architectural Innovation and Industry Collaboration
Shaping the Future of HPC through Architectural Innovation and Industry Collaboration
Reimagining AI Hardware: Neuromorphic Computing for Sustainable, Real-Time Intelligence
Reimagining AI Hardware: Neuromorphic Computing for Sustainable, Real-Time Intelligence
Quantum Insider Session Series: Strategic Networking in the Quantum Ecosystem for Collective Success
Quantum Insider Session Series: Strategic Networking in the Quantum Ecosystem for Collective Success
Computing’s Top 30: Sukanya S. Meher
Computing’s Top 30: Sukanya S. Meher
Securing the Software Supply Chain: Challenges, Tools, and Regulatory Forces
Securing the Software Supply Chain: Challenges, Tools, and Regulatory Forces
Get the latest news and technology trends for computing professionals with ComputingEdge
Sign up for our newsletter
Read Next

Shaping the Future of HPC through Architectural Innovation and Industry Collaboration

Reimagining AI Hardware: Neuromorphic Computing for Sustainable, Real-Time Intelligence

Quantum Insider Session Series: Strategic Networking in the Quantum Ecosystem for Collective Success

Computing’s Top 30: Sukanya S. Meher

Securing the Software Supply Chain: Challenges, Tools, and Regulatory Forces

Computing’s Top 30: Tejas Padliya

Reimagining Infrastructure and Systems for Scientific Discovery and AI Collaboration

IEEE 2881: Learning Metadata Terms (LMT) Empowers Learning in the AI Age