• IEEE.org
  • IEEE CS Standards
  • Career Center
  • About Us
  • Subscribe to Newsletter

0

IEEE
CS Logo
  • MEMBERSHIP
  • CONFERENCES
  • PUBLICATIONS
  • EDUCATION & CAREER
  • VOLUNTEER
  • ABOUT
  • Join Us
CS Logo

0

IEEE Computer Society Logo
Sign up for our newsletter
FacebookTwitterLinkedInInstagramYoutube
IEEE COMPUTER SOCIETY
About UsBoard of GovernorsNewslettersPress RoomIEEE Support CenterContact Us
COMPUTING RESOURCES
Career CenterCourses & CertificationsWebinarsPodcastsTech NewsMembership
BUSINESS SOLUTIONS
Corporate PartnershipsConference Sponsorships & ExhibitsAdvertisingRecruitingDigital Library Institutional Subscriptions
DIGITAL LIBRARY
MagazinesJournalsConference ProceedingsVideo LibraryLibrarian Resources
COMMUNITY RESOURCES
GovernanceConference OrganizersAuthorsChaptersCommunities
POLICIES
PrivacyAccessibility StatementIEEE Nondiscrimination PolicyIEEE Ethics ReportingXML Sitemap

Copyright 2025 IEEE - All rights reserved. A public charity, IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity.

  • Home
  • /Publications
  • /Tech News
  • /Research
  • Home
  • / ...
  • /Tech News
  • /Research

A Scalable and Extensible Computational Fluid Dynamics Software Framework for Ship Hydrodynamics Applications: NavyFOAM

By Lori Cameron

By Lori Cameron on
December 12, 2017
navy shipnavy ship The main challenge facing simulation-based hydrodynamic design of naval ships comes from the complexity of the salient physics involved around ships, which is further compounded by the multidisciplinary nature of ship applications. Simulation of the flow physics using “first principles” is computationally very expensive and time-consuming. Other challenges largely pertain to software engineering, ranging from software architecture, verification and validation (V & V), and quality assurance. In the article “A Scalable and Extensible Computational Fluid Dynamics Software Framework for Ship Hydrodynamics Applications: NavyFOAM,” (login may be required for full text) published in the November/December issue of Computing in Science & Engineering, researchers present  a computational fluid dynamics (CFD) framework called NavyFOAM that has been built around OpenFOAM, an open source CFD library written in C that heavily draws upon object-oriented programming. Also in the article, the design philosophy, features, and capabilities of the software framework, and computational approaches underlying NavyFOAM are described, followed by a description of the V&V effort and application examples selected from Navy’s recent R&D and acquisition programs.e (a) tweet density, (b) tweet flow, (c) word cloud, (d) tweet timeline, (e) flow length and time, and (f) tweet language and topic.[/caption] Its value lies in its unique combination of topical, spatial, temporal, and flow analysis, designed to help professionals prepare and plan for the future of cities. "Urban Space Explorer is the beginning of a transformation in the ways city professionals study urban settings. We believe in the near future the use of exploratory visual analytics interfaces such as ours will become a major tool for the study, observation, design, and policy formulation for the future of our cities," say the authors. The other authors of the research are Isaac Cho, William Ribarsky, Eric Sauda, and Wenwen Dou of the University of North Carolina at Charlotte and Ginette Wessel of Roger Williams University.
About Lori Cameron Lori Cameron is a Senior Writer for the IEEE Computer Society and currently writes regular features for Computer magazine, Computing Edge, and the Computing Now and Magazine Roundup websites. Contact her at l.cameron@computer.org. Follow her on LinkedIn.
LATEST NEWS
Reimagining Infrastructure and Systems for Scientific Discovery and AI Collaboration
Reimagining Infrastructure and Systems for Scientific Discovery and AI Collaboration
IEEE 2881: Learning Metadata Terms (LMT) Empowers Learning in the AI Age
IEEE 2881: Learning Metadata Terms (LMT) Empowers Learning in the AI Age
Platform Engineering: Bridging the Developer Experience Gap in Enterprise Software Development
Platform Engineering: Bridging the Developer Experience Gap in Enterprise Software Development
IEEE Std 3158.1-2025 — Verifying Trust in Data Sharing: Standard for Testing and Performance of a Trusted Data Matrix System
IEEE Std 3158.1-2025 — Verifying Trust in Data Sharing: Standard for Testing and Performance of a Trusted Data Matrix System
IEEE Std 3220.01-2025: Standard for Consensus Framework for Blockchain System
IEEE Std 3220.01-2025: Standard for Consensus Framework for Blockchain System
Get the latest news and technology trends for computing professionals with ComputingEdge
Sign up for our newsletter
Read Next

Reimagining Infrastructure and Systems for Scientific Discovery and AI Collaboration

IEEE 2881: Learning Metadata Terms (LMT) Empowers Learning in the AI Age

Platform Engineering: Bridging the Developer Experience Gap in Enterprise Software Development

IEEE Std 3158.1-2025 — Verifying Trust in Data Sharing: Standard for Testing and Performance of a Trusted Data Matrix System

IEEE Std 3220.01-2025: Standard for Consensus Framework for Blockchain System

Mapping the $85B AI Processor Landscape: Global Startup Surge, Market Consolidation Coming?

AI Agentic Mesh – A Foundational Architecture for Enterprise Autonomy

IEEE O.C A.I “DEVHACK” Hackathon 2025 Winner Celebration