• IEEE.org
  • IEEE CS Standards
  • Career Center
  • About Us
  • Subscribe to Newsletter

0

IEEE
CS Logo
  • MEMBERSHIP
  • CONFERENCES
  • PUBLICATIONS
  • EDUCATION & CAREER
  • VOLUNTEER
  • ABOUT
  • Join Us
CS Logo

0

IEEE Computer Society Logo
Sign up for our newsletter
FacebookTwitterLinkedInInstagramYoutube
IEEE COMPUTER SOCIETY
About UsBoard of GovernorsNewslettersPress RoomIEEE Support CenterContact Us
COMPUTING RESOURCES
Career CenterCourses & CertificationsWebinarsPodcastsTech NewsMembership
BUSINESS SOLUTIONS
Corporate PartnershipsConference Sponsorships & ExhibitsAdvertisingRecruitingDigital Library Institutional Subscriptions
DIGITAL LIBRARY
MagazinesJournalsConference ProceedingsVideo LibraryLibrarian Resources
COMMUNITY RESOURCES
GovernanceConference OrganizersAuthorsChaptersCommunities
POLICIES
PrivacyAccessibility StatementIEEE Nondiscrimination PolicyIEEE Ethics ReportingXML Sitemap

Copyright 2025 IEEE - All rights reserved. A public charity, IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity.

  • Home
  • /Publications
  • /Tech News
  • /Research
  • Home
  • / ...
  • /Tech News
  • /Research

Toward Exascale Earthquake Ground Motion Simulations for Near-Fault Engineering Analysis

By Lori Cameron

By Lori Cameron on
November 14, 2017

seismographseismographEarthquake ground motions pose an ever present risk to engineered structures and the infrastructure that modern life depends on. Civilization has evolved in close proximity to active earthquake faults and sedimentary basins that amplify seismic motions.

However, many cities at high ground motion risk haven’t experienced damaging motions due to long time intervals between large earthquake events.

In the September/October issue of Computing in Science & Engineering, researchers say application modernization for massively parallel time-domain simulations (login may be required for full text) of earthquake ground motion in 3D models is increasing application resolution and providing ground motion estimates for critical infrastructure risk evaluations.

Improvements to the geophysics application code SW4 algorithms, developed while porting the code to systems at Lawrence Berkeley National Laboratory, revealed that reorganizing operation order can improve performance for massive problems.

"In the absence of empirical data for large earthquakes in the near-fault region, seismologists are using high-performance computing (HPC) to simulate ground motions," the researchers said.

"In this study, we describe SW4 (seismic waves 4th order), a summation-by-parts finite-difference code for parallel simulations of seismic wave propagation. We describe how SW4 is being enhanced to run simulations on the next generation of HPC systems and how mesh refinement provides a remarkable reduction in the computational effort required to simulate a given earthquake. We also describe preliminary efforts to optimize SW4 for the Cori Phase 2 architecture at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory," the authors said.


About Lori Cameron

Lori Cameron is a Senior Writer for the IEEE Computer Society and currently writes regular features for Computer magazine, Computing Edge, and the Computing Now and Magazine Roundup websites. Contact her at l.cameron@computer.org. Follow her on LinkedIn.

LATEST NEWS
Quantum Insider Session Series: Practical Instructions for Building Your Organization’s Quantum Team
Quantum Insider Session Series: Practical Instructions for Building Your Organization’s Quantum Team
Beyond Benchmarks: How Ecosystems Now Define Leading LLM Families
Beyond Benchmarks: How Ecosystems Now Define Leading LLM Families
From Legacy to Cloud-Native: Engineering for Reliability at Scale
From Legacy to Cloud-Native: Engineering for Reliability at Scale
Announcing the Recipients of Computing's Top 30 Early Career Professionals for 2025
Announcing the Recipients of Computing's Top 30 Early Career Professionals for 2025
IEEE Computer Society Announces 2026 Class of Fellows
IEEE Computer Society Announces 2026 Class of Fellows
Read Next

Quantum Insider Session Series: Practical Instructions for Building Your Organization’s Quantum Team

Beyond Benchmarks: How Ecosystems Now Define Leading LLM Families

From Legacy to Cloud-Native: Engineering for Reliability at Scale

Announcing the Recipients of Computing's Top 30 Early Career Professionals for 2025

IEEE Computer Society Announces 2026 Class of Fellows

MicroLED Photonic Interconnects for AI Servers

Vishkin Receives 2026 IEEE Computer Society Charles Babbage Award

Empowering Communities Through Digital Literacy: Impact Across Lebanon

Get the latest news and technology trends for computing professionals with ComputingEdge
Sign up for our newsletter