• IEEE.org
  • IEEE CS Standards
  • Career Center
  • About Us
  • Subscribe to Newsletter

0

IEEE-CS_LogoTM-orange
  • MEMBERSHIP
  • CONFERENCES
  • PUBLICATIONS
  • EDUCATION & CAREER
  • VOLUNTEER
  • ABOUT
  • Join Us
IEEE-CS_LogoTM-orange

0

IEEE Computer Society Logo
Sign up for our newsletter
IEEE COMPUTER SOCIETY
About UsBoard of GovernorsNewslettersPress RoomIEEE Support CenterContact Us
COMPUTING RESOURCES
Career CenterCourses & CertificationsWebinarsPodcastsTech NewsMembership
BUSINESS SOLUTIONS
Corporate PartnershipsConference Sponsorships & ExhibitsAdvertisingRecruitingDigital Library Institutional Subscriptions
DIGITAL LIBRARY
MagazinesJournalsConference ProceedingsVideo LibraryLibrarian Resources
COMMUNITY RESOURCES
GovernanceConference OrganizersAuthorsChaptersCommunities
POLICIES
PrivacyAccessibility StatementIEEE Nondiscrimination PolicyIEEE Ethics ReportingXML Sitemap

Copyright 2025 IEEE - All rights reserved. A public charity, IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity.

  • Home
  • /Publications
  • /Tech News
  • /Research
  • Home
  • / ...
  • /Tech News
  • /Research

Genuine or Impostor: How Researchers Are Improving the Accuracy of Biometrics Systems Using Ensembles

By Lori Cameron

By Lori Cameron on
September 12, 2018
Featured ImageFeatured Image

Biometrics systems that use facial recognition, iris scans, voice recognition, and fingerprints are used all the time by banks, law enforcement, and employers.

Biometrics also give you a convenient and somewhat fail-safe way to log in to your electronic devices.

Now that more and more people are doing financial transactions and storing personal data online, service providers are looking at biometrics systems to improve security. However, recent studies show that biometric features can change over time—an effect called "template aging."

Adaptive biometric systems that use query samples classified as "genuine" have been proposed to deal with this problem. However, despite some good results, researchers are concerned about their robustness.

That's why a group of computer scientists from the University of São Paulo propose the use of a stacking ensemble to improve the way biometric systems classify certain traits.

Stacking ensembles combine several different algorithms that run on the same set of data increasing the precision of a biometric match.

"Several adaptive biometric systems have been proposed for one-class algorithms. Some are better at reducing false match, while others are better at reducing false non-matches. Combining individual techniques into ensembles can produce more accurate and stable decision models," say the authors of "Adaptive Biometric Systems Using Ensembles." (login may be required for full text)

Division of samples used for trainingDivision of samples used for training
Division of samples used for training. The system includes one genuine user and three impostors.

Ensembles teach biometrics systems how to better identify you.

They can improve the recognition performance of decision models, providing a more stable classification decision that will increase accuracy and security.

The authors—Paulo Henrique Pisani, Ana Carolina Lorena, and André C.P.L.F. de Carvalho—explore questions regarding the application of ensembles to adaptive biometric systems using one-class classification algorithms that will automatically adapt the meta classifier over time.

Research related to biometrics in the Computer Society Digital Library

Login may be required for full text.

  • Experiments with Ocular Biometric Datasets: A Practitioner’s Guideline
  • Situational Awareness through Biometrics
  • Continuous Authentication Using Behavioral Biometrics
  • Biometrics in Identity Management Systems
  • What Are Soft Biometrics and How Can They Be Used?
  • Biometrics and the Threat to Civil Liberties

About Lori Cameron

Lori Cameron is a Senior Writer for the IEEE Computer Society and currently writes regular features for Computer magazine, Computing Edge, and the Computing Now and Magazine Roundup websites. Contact her at l.cameron@computer.org. Follow her on LinkedIn.

LATEST NEWS
LinkedIn Profile Template
LinkedIn Profile Template
Quantum Insider Session Series: Choosing the Right Time and Steps for Start Working with Quantum Tech
Quantum Insider Session Series: Choosing the Right Time and Steps for Start Working with Quantum Tech
Igniting Young Minds: The Impact of IEEE CS Juniors STEMpire on Karnataka, Indian Students
Igniting Young Minds: The Impact of IEEE CS Juniors STEMpire on Karnataka, Indian Students
Monitoring LLM Safety with BERTopic: Clustering Failure Modes for Actionable Insights
Monitoring LLM Safety with BERTopic: Clustering Failure Modes for Actionable Insights
CS Juniors: ChiTech Discovery Days
CS Juniors: ChiTech Discovery Days
Read Next

LinkedIn Profile Template

Quantum Insider Session Series: Choosing the Right Time and Steps for Start Working with Quantum Tech

Igniting Young Minds: The Impact of IEEE CS Juniors STEMpire on Karnataka, Indian Students

Monitoring LLM Safety with BERTopic: Clustering Failure Modes for Actionable Insights

CS Juniors: ChiTech Discovery Days

CV Template

A History of Rendering the Future with Computer Graphics & Applications

AI Assisted Identity Threat Detection and Zero Trust Access Enforcement

Get the latest news and technology trends for computing professionals with ComputingEdge
Sign up for our newsletter