IEEE Transactions on Knowledge and Data Engineering

IEEE Transactions on Knowledge and Data Engineering (TKDE) is an archival journal published monthly designed to inform researchers, developers, managers, strategic planners, users, and others interested in state-of-the-art and state-of-the-practice activities in the knowledge and data engineering area. Read the full scope of TKDE

Expand your horizons with Colloquium, a monthly survey of abstracts from all CS transactions! Replaces OnlinePlus in January 2017.

From the February 2018 issue

An Efficient Ride-Sharing Framework for Maximizing Shared Route

By Na Ta, Guoliang Li, Tianyu Zhao, Jianhua Feng, Hanchao Ma, and Zhiguo Gong

Featured ArticleRide-sharing (RS) has great values in saving energy and alleviating traffic pressure. Existing studies can be improved for better efficiency. Therefore, we propose a new ride-sharing model, where each driver has a requirement that if the driver shares a ride with a rider, the shared route percentage (i.e., the ratio of the shared route's distance to the driver's total travel distance) exceeds an expectation rate of the driver, e.g., 0.8. We consider two variants of this problem. The first considers multiple drivers and multiple riders and aims to compute driver-rider pairs to maximize the overall shared route percentage (SRP). We model this problem as the maximum weighted bigraph matching problem, where the vertices are drivers and riders, edges are driver-rider pairs, and edge weights are driver-rider's SRP. However, it is rather expensive to compute the SRP values for large numbers of driver-rider pairs on road networks. To address this problem, we propose an efficient method to prune many unnecessary driver-rider pairs and avoid computing the SRP values for every pair. To improve the efficiency, we propose an approximate method with error bound guarantee. The basic idea is that we compute an upper bound and a lower bound for each driver-rider pair in constant time. Then, we estimate an upper bound and a lower bound of the graph matching. Next, we select some driver-rider pairs, compute their real shortest-route distance, and update the lower and upper bounds of the maximum graph matching. We repeat above steps until the ratio of the upper bound to the lower bound is not larger than a given approximate rate. The second considers multiple drivers and a single rider and aims to find the top-k drivers for the rider with the largest SRP. We first prune a large number of drivers that cannot meet the SRP requirements. Then, we propose a best-first algorithm that progressively selects the drivers with high probability to be in the top-k results and prunes the drivers that cannot be in the top-k results. Extensive experiments on real-world datasets demonstrate the superiority of our method.

download PDF View the PDF of this article      csdl View this issue in the digital library

Editorials and Announcements


  • TKDE now offers authors access to Code Ocean. Code Ocean is a cloud-based executable research platform that allows authors to share their algorithms in an effort to make the world’s scientific code more open and reproducible. Learn more or sign up for free.
  • We are pleased to announce that Xuemin Lin, a Scientia Professor in the School of Computer Science and Engineering at the University of New South Wales, Australia, has been named the new Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering starting in 2017.


Guest Editorials

Reviewers List

Annual Index

Access recently published TKDE articles

RSS Subscribe to the RSS feed of recently published TKDE content

mail icon Sign up for e-mail notifications through IEEE Xplore Content Alerts

preprints icon View TKDE preprints in the Computer Society Digital Library

Computing Now