tinyML integrates and cultivates the rapidly expanding subfield of ultra-low power machine learning technologies and methods dealing with machine intelligence at the cloud's edge. These integrated "small" machine learning applications necessitate "full-stack" (hardware, system, software, and applications) solutions that include machine learning architectures, techniques, tools, and methodologies capable of executing on-device analytics. Multiple sensing modalities (vision, audio, motion, environmental, human health monitoring, etc.) are used with extreme energy efficiency, often in the sub-milliwatt range, to enable machine intelligence at the physical-digital interface. We envision a future with billions of distributed intelligent devices powered by energy-efficient machine learning technologies that sense, evaluate, and act independently to create a more sustainable environment for everyone! This special issue intends to highlight the present state of the art in tinyML, including cross-layer design and verification methodologies, datasets and frameworks, algorithms, applications, and systems, as well as their interdependencies in the design of future tinyML systems. This special issue of IEEE Micro will feature outstanding, peer-reviewed publications on this emerging topic with interest to nurture the community.
This special session solicits topics of interest that include, but are not limited to:
For author information and guidelines on submission criteria, please visit IEEE Micro's Author Information page. Please submit papers through the ScholarOne system, and be sure to select the special-issue name. Manuscripts should not be published or currently submitted for publication elsewhere. Please submit only full papers intended for review, not abstracts, to the ScholarOne portal.
Please contact the guest editors at micro6-23@computer.org.
Guest Editors