• IEEE.org
  • IEEE CS Standards
  • Career Center
  • About Us
  • Subscribe to Newsletter

0

IEEE
CS Logo
  • MEMBERSHIP
  • CONFERENCES
  • PUBLICATIONS
  • EDUCATION & CAREER
  • VOLUNTEER
  • ABOUT
  • Join Us
CS Logo

0

IEEE Computer Society Logo
Sign up for our newsletter
IEEE COMPUTER SOCIETY
About UsBoard of GovernorsNewslettersPress RoomIEEE Support CenterContact Us
COMPUTING RESOURCES
Career CenterCourses & CertificationsWebinarsPodcastsTech NewsMembership
BUSINESS SOLUTIONS
Corporate PartnershipsConference Sponsorships & ExhibitsAdvertisingRecruitingDigital Library Institutional Subscriptions
DIGITAL LIBRARY
MagazinesJournalsConference ProceedingsVideo LibraryLibrarian Resources
COMMUNITY RESOURCES
GovernanceConference OrganizersAuthorsChaptersCommunities
POLICIES
PrivacyAccessibility StatementIEEE Nondiscrimination PolicyIEEE Ethics ReportingXML Sitemap

Copyright 2025 IEEE - All rights reserved. A public charity, IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity.

  • Home
  • /Digital Library
  • /Journals
  • /Ta
  • Home
  • / ...
  • /Journals
  • /Ta

CLOSED Call for Papers: Special Issue on Neuro-symbolic Artificial Intelligence for Sentiment Analysis

Neural network-based methods, especially deep learning, have been very successful in tackling the expanding data volume as we move into a digital age. Today, these methods not only are used for low-level cognitive tasks, such as recognizing objects and spotting keywords, but also have been deployed in various industrial information systems to assist high-level decision-making in finance, education, and healthcare. While producing highly accurate predictions on datasets, those artifacts provide little understanding of the internal features and representations of the data. Although much effort has been devoted to opening the black-box of neural networks, e.g., sensitivity analysis, the interpretability problem generally worsens as the model complexity grows. The potentially broad societal impacts of neural network-based methods alert people to a dystopian future and re-ignite research on neuro-symbolic AI: a key idea to mitigate unexpected model behavior and inject interpretability by combining learnable parameters (neuro-) with predefined knowledge templates (symbolic). Recent initiatives involve both the academia and company players, such as IBM and DeepMind. We have seen various types of logic parameterized and applied to such systems, including fuzzy logic, first-order logic, Boolean logic, and probabilistic logic. Instead of learning rules, another way of building neuro-symbolic AI is to leverage existing knowledge bases and to fuse the information at some stage. Both ways have achieved sound improvements in sentiment analysis and deepened our understanding of affective computing and the cognitive root of human emotion. In this context, this special issue aims to further stimulate discussion on the design, use, and evaluation of neuro-symbolic AI, with an emphasis on human factors and societal implications. We invite theoretical work and review articles on practical use cases of neuro-symbolic AI that discuss sentiment analysis, emotion recognition, and social computing in general. Original works that help mediate and generate insights on human information behaviors, human-system interactions, and affective states with neural network-based models are also encouraged. Topics of interest include, but are not limited to:
  • Neuro-symbolic AI for sentiment and emotion analysis in social media
  • Linguistic knowledge in deep neural networks for sentiment analysis
  • Integrating knowledge for opinion mining
  • Aspect-based, multimodal, and multilingual aspects of sentiment analysis
  • Critical assessments of existing sentiment analysis methods
  • Explainable sentiment and emotion predictions
  • Theoretical foundations of neuro-symbolic AI for affective computing
  • Commonsense reasoning for sentiment analysis
  • Semantic models for affective computing
  • Phrase structure grammar for sentiment analysis
  • Conversational sentiment analysis
  • Joint sentiment analysis and sarcasm/irony detection
  • Sentiment analysis and language learning theory
  • Sentiment analysis and social network analysis
  • Sentiment analysis and stress/suicide detection
  • Sentiment analysis and forecasting methods

Important Dates

  • Submission Deadline: 31 March 2022
  • Peer Review Due: 1 May 2022
  • Revision Due: 15 July 2022
  • Final Decision: 1 September 2022
  • Publication: September 2022

Submission Guidelines

For author information and guidelines on submission criteria, please visit the TAC Author Information page. Please submit papers through the ScholarOne system, and be sure to select the special-issue name. Manuscripts should not be published or currently submitted for publication elsewhere. Please submit only full papers intended for review, not abstracts, to the ScholarOne portal. Abstracts should be sent by email to the guest editors directly.

Guest Editors

Frank Xing, National University of Singapore, Singapore Iti Chaturvedi, James Cook University, Australia Erik Cambria, Nanyang Technological University, Singapore Amir Hussain, Edinburgh Napier University, UK Björn Schuller, audEERING GmbH, Germany
LATEST NEWS
IEEE 2881: Learning Metadata Terms (LMT) Empowers Learning in the AI Age
IEEE 2881: Learning Metadata Terms (LMT) Empowers Learning in the AI Age
Platform Engineering: Bridging the Developer Experience Gap in Enterprise Software Development
Platform Engineering: Bridging the Developer Experience Gap in Enterprise Software Development
IEEE Std 3158.1-2025 — Verifying Trust in Data Sharing: Standard for Testing and Performance of a Trusted Data Matrix System
IEEE Std 3158.1-2025 — Verifying Trust in Data Sharing: Standard for Testing and Performance of a Trusted Data Matrix System
IEEE Std 3220.01-2025: Standard for Consensus Framework for Blockchain System
IEEE Std 3220.01-2025: Standard for Consensus Framework for Blockchain System
Mapping the $85B AI Processor Landscape: Global Startup Surge, Market Consolidation Coming?
Mapping the $85B AI Processor Landscape: Global Startup Surge, Market Consolidation Coming?
Read Next

IEEE 2881: Learning Metadata Terms (LMT) Empowers Learning in the AI Age

Platform Engineering: Bridging the Developer Experience Gap in Enterprise Software Development

IEEE Std 3158.1-2025 — Verifying Trust in Data Sharing: Standard for Testing and Performance of a Trusted Data Matrix System

IEEE Std 3220.01-2025: Standard for Consensus Framework for Blockchain System

Mapping the $85B AI Processor Landscape: Global Startup Surge, Market Consolidation Coming?

AI Agentic Mesh – A Foundational Architecture for Enterprise Autonomy

IEEE O.C A.I “DEVHACK” Hackathon 2025 Winner Celebration

Broadening Participation Winners 2026

FacebookTwitterLinkedInInstagramYoutube
Get the latest news and technology trends for computing professionals with ComputingEdge
Sign up for our newsletter