• IEEE.org
  • IEEE CS Standards
  • Career Center
  • About Us
  • Subscribe to Newsletter

0

IEEE
CS Logo
  • MEMBERSHIP
  • CONFERENCES
  • PUBLICATIONS
  • EDUCATION & CAREER
  • VOLUNTEER
  • ABOUT
  • Join Us
CS Logo

0

IEEE Computer Society Logo
Sign up for our newsletter
IEEE COMPUTER SOCIETY
About UsBoard of GovernorsNewslettersPress RoomIEEE Support CenterContact Us
COMPUTING RESOURCES
Career CenterCourses & CertificationsWebinarsPodcastsTech NewsMembership
BUSINESS SOLUTIONS
Corporate PartnershipsConference Sponsorships & ExhibitsAdvertisingRecruitingDigital Library Institutional Subscriptions
DIGITAL LIBRARY
MagazinesJournalsConference ProceedingsVideo LibraryLibrarian Resources
COMMUNITY RESOURCES
GovernanceConference OrganizersAuthorsChaptersCommunities
POLICIES
PrivacyAccessibility StatementIEEE Nondiscrimination PolicyIEEE Ethics ReportingXML Sitemap

Copyright 2025 IEEE - All rights reserved. A public charity, IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity.

  • Home
  • /Digital Library
  • /Journals
  • /Oj
  • Home
  • / ...
  • /Journals
  • /Oj

CLOSED Call for Papers: Special Section on Ubiquitous Machine Learning over Beyond 5G/6G Networks

The ever-growing big data has empowered ubiquitous artificial intelligence (AI) for a wide range of novel technologies that keep reshaping our world to evolve from Internet of Everything (IoE) to Internet of Intelligence (IoI). Current deployment 5G networks, however, relies on centralized management and model-based analytics over fix-configured infrastructures, and thus exposes limitations for achieving seamless connections among humans and ubiquitous things in terms of unlimited connectivity, space-air-ground coverage, extremely low latency, strong robustness, and self-adaptation capability. These features are missing from the status quo. However, in expected beyond 5G (B5G) and 6G networks, the launch of the next-generation network system with revolutionary technologies (such as intelligent surfaces, cell-free architecture, massive MIMO, space-air-ground integrated networks, and cyber-twin) will be able to transition the role of access networks from the carrier of data to the carrier of intelligence, so that the advance of machine learning-enabled paradigms can be accelerated over the synergy of smart networking and connected intelligence. The reciprocal relationship between next-generation access network and future AI development has encouraged many new research areas, including AI-enabled network optimization, distributed system, edge computing, federated learning at scale, and peer-to-peer learning. Status quo literatures often have limitations due to the legacy-configured network constraints, or impractical assumptions for idealized data communication, and thus lack feasibility in practical systems. In recent years, there has been great progress in novel AI analytics and intelligent paradigms that greatly improved the learning efficiency and accuracy. Simply applying these learning paradigms to wireless network scenarios can often ignore the actual challenges in wireless communication and miss the unique characteristics and technical advantages of new networking solutions, and thus restrict the further application of the latest progress in machine-learning technologies. To promote the learning intelligence for mobile users distributed in broad geographical scope, and to emphasize its significance in a future-generation network, this special section calls for novel and promising machine-learning paradigms that take advantage of new features of B5G/6G networks that can be widely applied in many scenarios (such as vehicular networks, large-scale Internet of Things, and space-air-ground integrated networks). The special section aims to invite researchers from both academia and industry to present their research findings and engineering practices to envision a future that ubiquitous AI can be provisioned via the interdisciplinary research between computing and communication. The special section seeks original and prominent research works on state-of-the-art learning approaches, methodologies, and key technologies, as well as practical systems regarding ubiquitous learning over a new generation of wireless access networks. Topics of interest include, but are not limited to:
  • Emerging learning architecture and framework over B5G/6G networks
  • Federated learning over large-scale Internet of Things
  • Collaborative learning over vehicular networks
  • Knowledge-driven paradigms for future networking
  • Cyber-twin-driven 6G for ubiquitous machine learning
  • Ubiquitous learning in space-air-ground integrated networks
  • Machine learning in cloud-edge networks
  • Machine-learning techniques in sensing-communication-computing integration
  • Meta learning for knowledge transfer over B5G/6G networks
  • Transfer learning in heterogeneous networks
  • AI-enabled intelligent networking in B5G/6G networks
  • Adversary learning for security and privacy preserving in B5G/6G networks
  • Reinforcement learning for intelligent strategy in 6G communication

Important Dates

Submissions due: May 15, 2021 Notification to authors: June 15, 2021 Revisions due: July 15, 2021 Final notification: August 15, 2021 Publication: 2021

Guest Editors

Wenchao Xu, The Hong Kong Polytechnic University, Hong Kong, wenchao.xu@polyu.edu.hk Cunqing Hua, Shanghai Jiao Tong University, China, cqhua@sjtu.edu.cn Haibo Zhou, Nanjing University, China, haibozhou@nju.edu.cn Nan Cheng, Xidian University, China, dr.nan.cheng@ieee.org Mehrdad Dianati, University of Warwick, UK, M.Dianati@warwick.ac.uk
LATEST NEWS
Shaping the Future of HPC through Architectural Innovation and Industry Collaboration
Shaping the Future of HPC through Architectural Innovation and Industry Collaboration
Reimagining AI Hardware: Neuromorphic Computing for Sustainable, Real-Time Intelligence
Reimagining AI Hardware: Neuromorphic Computing for Sustainable, Real-Time Intelligence
Quantum Insider Session Series: Strategic Networking in the Quantum Ecosystem for Collective Success
Quantum Insider Session Series: Strategic Networking in the Quantum Ecosystem for Collective Success
Computing’s Top 30: Sukanya S. Meher
Computing’s Top 30: Sukanya S. Meher
Securing the Software Supply Chain: Challenges, Tools, and Regulatory Forces
Securing the Software Supply Chain: Challenges, Tools, and Regulatory Forces
Read Next

Shaping the Future of HPC through Architectural Innovation and Industry Collaboration

Reimagining AI Hardware: Neuromorphic Computing for Sustainable, Real-Time Intelligence

Quantum Insider Session Series: Strategic Networking in the Quantum Ecosystem for Collective Success

Computing’s Top 30: Sukanya S. Meher

Securing the Software Supply Chain: Challenges, Tools, and Regulatory Forces

Computing’s Top 30: Tejas Padliya

Reimagining Infrastructure and Systems for Scientific Discovery and AI Collaboration

IEEE 2881: Learning Metadata Terms (LMT) Empowers Learning in the AI Age

FacebookTwitterLinkedInInstagramYoutube
Get the latest news and technology trends for computing professionals with ComputingEdge
Sign up for our newsletter