Submissions due: 23 May 2025
Publication: Nov/Dec 2025
With the proliferation of mobile and edge computing devices, data generation continues to grow at an exponential rate, reaching an estimated 181 zettabytes processed per year by 2025. In response, computing systems large and small need to process ever-increasing amounts of data quickly and efficiently, leading to the rise of data-centric computing. Data-centric computing covers a broad range of hardware and software co-design topics, spanning techniques that (1) reduce the amount data transmitted, (2) optimize data movement using knowledge of latency and bandwidth of the connections between compute and sources of data, (3) integrate specialized heterogeneous or non-von-Neumann components in data-processing systems, or (4) develop new methods to synthesize or summarize data in place or minimize the overhead of data accesses. A common thread emerging across data-centric computing techniques is the need for hardware/software co-design in compute, memory, storage, and interconnect to deliver sizable improvements in performance and energy efficiency that rely on both traditional and unconventional scaling techniques
This special issue of IEEE Micro solicits academic and industrial research on co-designed solutions that revisit traditional boundaries between compute, memory, storage, interconnect and the software to support new architectures and programming abstractions. The solutions that will meet the test of time will balance specificity with generality, classify general principles, and denote metrics to measure a solution’s benefits and highlight remaining challenges. These solutions will serve as a template for how to apply future innovations in hardware and software to emerging use cases requiring even more generated data.
TOPICS OF INTEREST
For author information and guidelines on submission criteria, please visit the Author Information page. Please submit papers through the ScholarOne system, and be sure to select the special-issue name. Manuscripts should not be published or currently submitted for publication elsewhere. Please submit only full papers intended for review, not abstracts, to the ScholarOne portal.