• IEEE.org
  • IEEE CS Standards
  • Career Center
  • About Us
  • Subscribe to Newsletter

0

IEEE
CS Logo
  • MEMBERSHIP
  • CONFERENCES
  • PUBLICATIONS
  • EDUCATION & CAREER
  • VOLUNTEER
  • ABOUT
  • Join Us
CS Logo

0

IEEE Computer Society Logo
Sign up for our newsletter
FacebookTwitterLinkedInInstagramYoutube
IEEE COMPUTER SOCIETY
About UsBoard of GovernorsNewslettersPress RoomIEEE Support CenterContact Us
COMPUTING RESOURCES
Career CenterCourses & CertificationsWebinarsPodcastsTech NewsMembership
BUSINESS SOLUTIONS
Corporate PartnershipsConference Sponsorships & ExhibitsAdvertisingRecruitingDigital Library Institutional Subscriptions
DIGITAL LIBRARY
MagazinesJournalsConference ProceedingsVideo LibraryLibrarian Resources
COMMUNITY RESOURCES
GovernanceConference OrganizersAuthorsChaptersCommunities
POLICIES
PrivacyAccessibility StatementIEEE Nondiscrimination PolicyIEEE Ethics ReportingXML Sitemap

Copyright 2025 IEEE - All rights reserved. A public charity, IEEE is the world’s largest technical professional organization dedicated to advancing technology for the benefit of humanity.

  • Home
  • /Digital Library
  • /Journals
  • /Ec
  • Home
  • / ...
  • /Journals
  • /Ec

CLOSED Call for Papers: Special Section on Community Detection in Time-Varying Information and Computing Networks: Theory, Models, and Applications

Analysis of information and computing networks (ICNs), like social networks (such as Facebook and Twitter), protein interaction networks, and human brain networks, helps us to understand various real-world systems. It also benefits real-world domains such as data analytics, process analytics, service computing, and knowledge discovery. Networks derived from real-world systems always evolve with changing network topological structures and temporal entities’ semantic features, which requires novel and advanced techniques to handle this issue for time-varying information and computing networks (TVICNs). Community structure has been observed as a common phenomenon to describe the cohesion of entities with complicated relationships and features in ICNs. It provides valuable information for widespread practical applications such as business, sociology, biology, and health, which assigns community detection a more important role in ICN analysis. According to the recent investigation over the last decade, the development of community detection research has been brought into a prospering era, which provides a great opportunity for TVICN analysis. Although recent studies on community detection have paid more attention to combining the network topology information and entities’ semantic features in static environments, community detection in TVICNs faces much more complicated real-world scenarios with significant challenges to address. Besides the network evolution, TVICNs encounter multiple network layers, connections between multiple types of items, cross-domain information, multi-view attributes, and increasing network scale. All these challenges require better solutions for the further development of this field. Therefore, it is quite urgent and essential to design novel and effective solutions for community detection in TVICNs. The aim of this special section is to solicit contributions to fundamental research in community detection in TVICNs. We seek studies on 1) community detection in TVICNs applied to business, sociology, biology, health, and other industrial applications that help to solve real-world problems; 2) new algorithmic foundations and representation formalisms to address issues on network evolution, complicated information, and changing characteristics for TVICNs; 3) TVICNs’ contributions to real-world domains; and 4) theoretically interpreting the power and limitations of community detection methodologies for TVICNs. Topics of interest include (but are not limited to):
  • Applied TVICNs and methodologies to solve real-world problems in business, sociology, biology, health, and other industrial applications, such as (but not limited to):- recommender systems,- social network analysis,- protein function prediction,- cancer detection, and- anomaly detection.
  • Real-world TVICNs and related methodologies to address issues regarding network evolution, heterogeneous/complex information, and changing characteristics, such as (but not limited to):- changes in computing networks topology structures and/or in temporal entities’ semantic features,- complex computing network architecture based on multiple layers,- computing networks characterized by heterogeneous, cross-domain, multi-view information, and increasing computing network scale.
  • TVICNs for data analytics, process analytics, service computing, and knowledge discovery in real-world domains.

Schedule

Deadline for submissions: 31 December 2021 First decision (accept/reject/revise, tentative): 31 March 2022 Submission of revised papers: 31 May 2022 Notification of final decision (tentative): 31 July 2022 Journal publication (tentative): second half of 2022

Submission Guidelines

For author information and guidelines on submission criteria, please visit the Author Information page. Please submit papers through the ScholarOne system, and be sure to select the special-section name. Manuscripts should not be published or currently submitted for publication elsewhere. Please submit only full papers intended for review, not abstracts, to the ScholarOne portal.

Questions?

Contact the guest editors at tvicn.tetc@gmail.com. Guest editors: Jia Wu, Macquarie University, Australia (IEEE Senior Member) Jian Yang, Macquarie University, Australia (IEEE Member) Philip S. Yu, University of Illinois at Chicago, USA (IEEE Fellow) Corresponding TETC editor: Carlo Condo, Infinera/Carleton University, Canada (IEEE Senior Member)
LATEST NEWS
Reimagining AI Hardware: Neuromorphic Computing for Sustainable, Real-Time Intelligence
Reimagining AI Hardware: Neuromorphic Computing for Sustainable, Real-Time Intelligence
Quantum Insider Session Series: Strategic Networking in the Quantum Ecosystem for Collective Success
Quantum Insider Session Series: Strategic Networking in the Quantum Ecosystem for Collective Success
Computing’s Top 30: Sukanya S. Meher
Computing’s Top 30: Sukanya S. Meher
Securing the Software Supply Chain: Challenges, Tools, and Regulatory Forces
Securing the Software Supply Chain: Challenges, Tools, and Regulatory Forces
Computing’s Top 30: Tejas Padliya
Computing’s Top 30: Tejas Padliya
Read Next

Reimagining AI Hardware: Neuromorphic Computing for Sustainable, Real-Time Intelligence

Quantum Insider Session Series: Strategic Networking in the Quantum Ecosystem for Collective Success

Computing’s Top 30: Sukanya S. Meher

Securing the Software Supply Chain: Challenges, Tools, and Regulatory Forces

Computing’s Top 30: Tejas Padliya

Reimagining Infrastructure and Systems for Scientific Discovery and AI Collaboration

IEEE 2881: Learning Metadata Terms (LMT) Empowers Learning in the AI Age

Platform Engineering: Bridging the Developer Experience Gap in Enterprise Software Development

Get the latest news and technology trends for computing professionals with ComputingEdge
Sign up for our newsletter