
Computing Curricula 2001

Computer Science

— Final Report —
(December 15, 2001)

The Joint Task Force on Computing Curricula
IEEE Computer Society

Association for Computing Machinery

This material is based upon work supported by the
National Science Foundation under Grant No. 0003263

Composition of the Curriculum 2001 Joint Task Force

Vice-President, IEEE-CS Education Activities Board
Carl Chang

Chair, ACM Education Board
Peter J. Denning

IEEE-CS delegation
James H. Cross II (co-chair)
Gerald Engel (co-chair and editor)
Robert Sloan (secretary)
Doris Carver
Richard Eckhouse
Willis King
Francis Lau
Susan Mengel
Pradip Srimani

ACM delegation
Eric Roberts (co-chair and editor)
Russell Shackelford (co-chair)
Richard Austing
C. Fay Cover
Gordon Davies
Andrew McGettrick
G. Michael Schneider
Ursula Wolz

Endorsed by the ACM Council, November 2001
Endorsed by the IEEE-CS Board of Governors, December 2001

Executive Summary
This document represents the final report of the Computing Curricula 2001 project
(CC2001)—a joint undertaking of the Computer Society of the Institute for Electrical and
Electronic Engineers (IEEE-CS) and the Association for Computing Machinery (ACM)
to develop curricular guidelines for undergraduate programs in computing. The report
continues a long tradition of recommendations for academic programs in computing-
related fields dating back to 1965, as described in Chapter 2 of the report.

This volume of the report outlines a set of recommendations for undergraduate programs
in computer science. As described in Chapter 1, the CC2001 report will eventually
consist of several volumes containing separate recommendations for other computing
disciplines, including computer engineering, software engineering, and information
systems. Those reports are each under the control of separate committees and will be
published as they are completed.

Highlights of this report include the following:

• The CS body of knowledge. We have identified a body of knowledge appropriate to
undergraduate computer science programs. Drawing on the structure of earlier
curriculum reports, we have arranged that body of knowledge hierarchically,
subdividing the field into areas, which are then broken down further into units and
individual topics. An overview of the body of knowledge appears in Chapter 5.

• The CS undergraduate core. From the 132 units in the body of knowledge, we have
selected 64 that represent core material, accounting for approximately 280 hours of
instruction. As noted in our statement of principles in Chapter 4, we defined the core
as the set of units for which there is a broad consensus that the material is essential to
an undergraduate degree in computer science. The philosophy behind the definition of
the core is described in more detail in Chapter 5.

• Learning objectives. For each of the units in the body of knowledge, we have
developed a set of learning objectives designed to promote assessment of student
achievement. These learning objectives appear as part of the detailed description of
the body of knowledge in Appendix A. In addition to the individual learning
objectives, Chapter 11 of the report outlines a more general set of objectives that all
computer science graduates should be able to meet.

• Curriculum models. The report identifies six approaches to introductory computer
science that have proven successful in practice, as described in Chapter 7. Building on
that foundation, Chapter 8 offers a set of four thematic approaches for presenting the
core material in intermediate-level courses. The discussion of curricular models
continues in Chapter 9, which offers several models for the curriculum as a whole.

• Course descriptions. Appendix B contains detailed course descriptions for 47 courses
that are part of the various curriculum models. In addition, we have identified over 80
additional advanced courses that would be appropriate for undergraduate programs.

The process of developing the report has been highly inclusive. More than 150 people
have been directly involved in the focus groups established to contribute to the process.
In addition, the report has been widely reviewed by academics and practitioners through a
series of three public drafts. We have also held a series of feedback sessions at
conferences and meetings, including the Special Interest Group on Computer Science
Education symposium (SIGCSE), the Frontiers in Education conference (FIE), the World
Congress on Computers and Education (WCCE), along with various smaller meetings in
Europe, Asia, and various parts of the United States. These meetings have provided us
with critically important feedback, which we have used to shape the final report.

Table of Contents

Chapter 1. Introduction ...1
Chapter 2. Lessons from Past Reports ..6
Chapter 3. Changes in the Computer Science Discipline ...9
Chapter 4. Principles ...12
Chapter 5. Overview of the CS Body of Knowledge..14
Chapter 6. Overview of the Curricular Models...18
Chapter 7. Introductory Courses ...22
Chapter 8. Intermediate Courses...35
Chapter 9. Completing the Curriculum...40
Chapter 10. Professional Practice ...55
Chapter 11. Characteristics of CS Graduates..62
Chapter 12. Computing across the Curriculum...67
Chapter 13. Institutional Challenges...74
Acknowledgments...78
Bibliography..79
Appendix A. The CS Body of Knowledge ...83
Appendix B. CS Course Descriptions...157

CC2001 Computer Science volume – 1 –
Final Report (December 15, 2001)

Chapter 1
Introduction

In the fall of 1998, the Computer Society of the Institute for Electrical and Electronic
Engineers (IEEE-CS) and the Association for Computing Machinery (ACM) established
the Joint Task Force on Computing Curricula 2001 (or CC2001 for short) to undertake a
major review of curriculum guidelines for undergraduate programs in computing. The
charter of the task force was expressed as follows:

To review the Joint ACM and IEEE/CS Computing Curricula 1991 and develop a revised
and enhanced version for the year 2001 that will match the latest developments of
computing technologies in the past decade and endure through the next decade.

As indicated in our charter, the goal of the CC2001 effort is to revise Computing
Curricula 1991 so that it incorporates the developments of the past decade. That task has
proved much more daunting than we had originally realized. Computing has changed
dramatically over that time in ways that have a profound effect on curriculum design and
pedagogy. Moreover, the scope of what we call computing has broadened to the point
that it is difficult to define it as a single discipline. Past curriculum reports have
attempted to merge such disciplines as computer science, computer engineering, and
software engineering into a single report about computing education. While such an
approach may have seemed reasonable ten years ago, there is no question that computing
in the 21st century encompasses many vital disciplines with their own integrity and
pedagogical traditions.

1.1 Overall structure of the CC2001 series
In light of the broadening scope of computing—and because the feedback we received on
our initial draft strongly encouraged us to move in this direction—we have chosen to
divide the CC2001 report into several volumes. This volume focuses specifically on
computer science. To encompass the many other disciplines that are part of the overall
scope of computing and information technology, however, IEEE-CS and ACM have
created additional committees to undertake similar efforts in other areas, including
computer engineering, software engineering, and information systems.

Once the individual reports have been completed, representatives from all the disciplines
will come together to produce an overview volume that links the series together. That
overview volume will contain definitions of the various computing disciplines along with
an assessment of the commonalities that exist in the curricular approaches. The structure
of the series as a whole is illustrated in Figure 1-1.

1.2 Overview of the CC2001 process
Developing the recommendations in this volume is primarily the responsibility of the
CC2001 Task Force, the members of which are listed at the beginning of this report.
Given the scale of the CC2001 project and the scope over which it extends, it was
necessary to secure the involvement of many other people, representing a wide range of
constituencies and areas of expertise. To ensure the broad participation necessary for
success in a project of this kind, the task force established a total of 20 focus groups,
divided into two distinct categories: Knowledge Focus Groups (KFGs) and Pedagogy
Focus Groups (PFGs).

CC2001 Computer Science volume – 2 –
Final Report (December 15, 2001)

F
ig

u
re

 1
-1

O

v
e

ra
ll

 s
tr

u
c

tu
re

 o
f

th
e

 C
C

2
0

0
1

 r
e

p
o

rt C
om

pu
tin

g
C

ur
ri

cu
la

 2
00

1

O
ve

rv
ie

w

T
he

 J
oi

nt
 T

as
k

F
or

ce

on
 C

om
pu

tin
g

C
ur

ric
ul

a

IE
E

E
 C

om
pu

te
r

S
oc

ie
ty

A
ss

oc
ia

tio
n

fo
r

C
om

pu
tin

g
M

ac
hi

ne
ry

T
he

 o
ve

rv
ie

w
 d

oc
um

en
t w

il
l b

e
pr

od
uc

ed
 b

y
re

pr
es

en
ta

tiv
es

 o
f t

he
 v

ar
io

us
 d

is
ci

pl
in

es
 a

fte
r

th
e

in
di

vi
du

al
 r

ep
or

ts
 a

re
 c

om
pl

et
e.

 I
t w

ill

fo
cu

s
on

 c
om

pu
tin

g
ed

uc
at

io
n

as
 a

 w
ho

le
.

Th
is

 r
ep

or
t (

w
hi

ch
 y

ou
 a

re
 r

ea
di

ng

no
w

 in
 d

ra
ft)

 w
ill

 b
e

pu
bl

is
he

d
in

20

01
 b

y
th

e
C

C
20

01
 T

as
k

F
or

ce
.

Th
es

e
re

po
rt

s—
pe

rh
ap

s
w

ith
 a

dd
iti

on
al

vo

lu
m

es
 fo

r
ot

he
r

di
sc

ip
li

ne
s—

w
il

l b
e

pr
ep

ar
ed

 in
 c

on
su

lta
tio

n
w

ith
 e

xi
st

in
g

cu
rr

ic
ul

um
 c

om
m

itt
ee

s
in

 th
es

e
ar

ea
s.

In

 m
an

y
ca

se
s,

 th
es

e
co

m
m

itt
ee

s
ha

ve

al
re

ad
y

pu
bl

is
he

d
cu

rr
ic

ul
um

 g
ui

de
lin

es

th
at

 c
an

 e
as

ily
 b

e
in

co
rp

or
at

ed
 in

to
 th

e
C

C
20

01
 s

tr
uc

tu
re

.

N
ot

e:
 T

hi
s

di
ag

ra
m

 r
ep

re
se

nt
s

ou
r

vi
si

on
 o

f t
he

 e
ve

nt
ua

l s
tr

uc
tu

re
 o

f t
he

 C
C

20
01

 r
ep

or
t.

 N
o

of
fic

ia
l o

rg
an

iz
at

io
na

l e
nd

or
se

m
en

ts
 h

av
e

ye
t b

ee
n

ob
ta

in
ed

.

C
om

pu
tin

g
C

ur
ri

cu
la

 2
00

1

C
om

pu
te

r
S

ci
en

ce

T
he

 J
oi

nt
 T

as
k

F
or

ce

on
 C

om
pu

tin
g

C
ur

ric
ul

a

IE
E

E
 C

om
pu

te
r

S
oc

ie
ty

A
ss

oc
ia

tio
n

fo
r

C
om

pu
tin

g
M

ac
hi

ne
ry

C
om

pu
tin

g
C

ur
ri

cu
la

 2
00

1

C
om

pu
te

r
E

ng
in

ee
ri

ng

T
he

 J
oi

nt
 T

as
k

F
or

ce

on
 C

om
pu

tin
g

C
ur

ric
ul

a

IE
E

E
 C

om
pu

te
r

S
oc

ie
ty

A
ss

oc
ia

tio
n

fo
r

C
om

pu
tin

g
M

ac
hi

ne
ry

C
om

pu
tin

g
C

ur
ri

cu
la

 2
00

1

S
of

tw
ar

e
E

ng
in

ee
ri

ng

T
he

 J
oi

nt
 T

as
k

F
or

ce
 o

n
S

of
tw

ar
e

E
ng

in
ee

rin
g

E
du

ca
tio

n
P

ro
je

ct
(S

W
E

E
P

)

C
om

pu
tin

g
C

ur
ri

cu
la

 2
00

1

In
fo

rm
at

io
n

S
ys

te
m

s

A
ss

oc
ia

tio
n

fo
r

C
om

pu
tin

g
M

ac
hi

ne
ry

A
ss

oc
ia

tio
n

fo
r

In
fo

rm
at

io
n

S
ys

te
m

s
A

ss
oc

ia
tio

n
of

 In
fo

rm
at

io
n

T
ec

hn
ol

og
y

P
ro

fe
ss

io
na

ls

A
 s

ep
ar

at
e

co
m

m
itt

ee
 h

as
 b

ee
n

es
ta

bl
is

he
d

to
 p

re
pa

re
 th

e
vo

lu
m

e
on

 C
om

pu
te

r
E

ng
in

ee
ri

ng
.

CC2001 Computer Science volume – 3 –
Final Report (December 15, 2001)

1.2.1 Knowledge focus groups (KFGs)
Early in its history, the CC2001 Task Force identified a set of 14 areas that together
represented the body of knowledge for computer science at the undergraduate level, as
shown in Figure 1-2. For each of these areas, the task force appointed a knowledge focus
group composed of people with expertise and teaching experience in that domain. The
charge to each KFG was to prepare a report on the area from which the task force could
assemble the complete CS body of knowledge. Additional details on this aspect of the
process appear in Chapter 5 and Appendix A.

1.2.2 Pedagogy focus groups
Although the knowledge area focus groups are essential in terms of defining the body of
knowledge in each subdiscipline, they are not in themselves sufficient. Because each
group looks at the field of computer science through a lens that reflects a particular
specialty area, the KFG structure does not encourage the development of a broad vision
of the curriculum that focuses on crosscutting themes common throughout the discipline.
To develop that more holistic perspective and to address a variety of questions that
transcend the boundaries of the individual subdisciplines, the CC2001 Task Force
established six pedagogy focus groups to consider curricular issues across computer
science as a whole. These groups are listed, along with their specific charges, in Figure
1-3.

The pedagogy focus groups were formed later in the process than the counterpart focus
groups examining the knowledge areas. The work of the pedagogy focus groups,
moreover, proved more difficult to carry out solely through electronic communication.
With the support of a generous grant from the National Science Foundation, the CC2001
Task Force was able to convene a face-to-face meeting of the pedagogy focus groups in
June 2000, which proved extremely valuable in developing the final reports.

1.2.3 Two-Year College Task Force
Following the release in early 2001 of a draft version of CC2001, the ACM Two-Year
College Education Committee formed a joint ACM/IEEE-CS task force whose purpose
was to formulate a parallel curriculum report for the two-year college setting. This task
force undertook a very detailed examination of the draft CC2001 guidelines, focusing on
the introductory computer science topics and associated learning objectives, the
mathematics content, and electives at the introductory level. The CC2001 report was
subsequently influenced by the work of the two-year college task force, and that work
provided the basis for parallel introductory course sequences that foster greater
compatibility between two-year and four-year curricula, thereby facilitating the transfer
process.

1.3 Structure of the CC2001 computer science report
This volume of the CC2001 report looks specifically at computer science. The main
body of the report consists of 13 chapters. Chapter 2 begins with a survey and analysis of

Figure 1-2. The 14 knowledge focus groups

Discrete Structures (DS) Human-Computer Interaction (HC)
Programming Fundamentals (PF) Graphics and Visual Computing (GV)
Algorithms and Complexity (AL) Intelligent Systems (IS)
Architecture and Organization (AR) Information Management (IM)
Operating Systems (OS) Social and Professional Issues (SP)
Net-Centric Computing (NC) Software Engineering (SE)
Programming Languages (PL) Computational Science (CN)

CC2001 Computer Science volume – 4 –
Final Report (December 15, 2001)

Figure 1-3. The six pedagogy focus groups and their charges

PFG1. Introductory topics and courses
a. Identify the goals of the first year of study.
b. Report on the strengths and weaknesses of the traditional programming-first approach.
c. Provide a short list of alternative approaches which have credibility in terms of meeting those goals.
d. Identify and/or develop one or more introductory course sequences that address the problem of dissimilar

preparation of incoming students, do not rely on terminal service courses to discriminate among the various
needs and backgrounds of students who are just beginning their undergraduate careers, and introduce
computer science as a mainstream discipline that forms part of the academic core for a broad population of
undergraduate students.

e. Present syllabi for a short list of options for the first year of computer science study that satisfy the goals in
point (a) and that can serve as models for colleges and publishers.

PFG2. Supporting topics and courses
a. Specify a set of educational goals outside of traditional computer science that support undergraduate

computer science education, such as mathematics, engineering, science, technical writing, public speaking,
economics, project management, and so forth.

b. Identify a minimal list of supporting topics deemed essential to any undergraduate computer science
curriculum regardless of the nature of the institution.

c. Present suggestions for additional supporting topics beyond that minimum that may vary depending on the
type of institution, the populations an institution serves, and the number of courses which the institution is
allowed to include in a program.

d. Develop specifications for one or more sets of non-CS courses that satisfy these goals.
e. Develop one or more models for satisfying some or all of these goals by integrating them into computing

courses.

PFG3. The computing core
a. Given the specification of the CS core as input, develop a small number of curricular models that satisfy the

core requirements. Each model should consist of a short list of courses (four or five courses beyond the
introductory year of study), which would be required of every computer science graduate and which would
be manageable by virtually every type of undergraduate program.

b. Develop at least one curricular model that is an alternative to the traditional approach of organizing
programs around artifacts (e.g., courses in compilers, operating systems, and the like). Such models will
consist of cross-cutting courses focused on fundamental concepts, principles, and skills.

c. Develop at least one curricular model that has the Internet as its unifying theme.

PFG4. Professional practices
a. Report on those aspects of professional practices that our graduates have (or should have) assimilated as a

result of current curricula.
b. Report on what we do and do not know about supporting effective education in those professional practices.
c. Report on how these needs can be integrated into courses in the curriculum.
d. Report on industrial and internship work and its relationship to the development of professional practices.
e. Report on other aspects of professionalism (including ethical, social, legal and moral issues) and their

relationship to the computer science curriculum.

PFG5. Advanced study and undergraduate research
a. Given the definition of the CS core, develop a specification of computer science education beyond the core

that is necessary and sufficient for a undergraduate degree in computer science.
b. Develop a specification of the characteristics of graduates who have earned a four-year undergraduate

degree.
c. Include a specification of courses in both traditional and nontraditional areas that may be important for

modern undergraduate CS curricula.
d. Report on undergraduate research, including an evaluation of various existing models.

PFG6. Computing across the curriculum
a. Articulate “the core of the core” relevant to all citizens and to various families of academic disciplines.
b. Plan and develop a proper curriculum development effort that will address rigorously the challenge of

computing curricula for non-CS majors, be appropriate to institutions other than traditional four-year
universities (such as two-year community colleges in the United States), appeal to those from other
computing-related disciplines, appeal to those academic disciplines that make significant use of computing.

c. Acknowledge that this is a crucial area but one for which we cannot unilaterally develop an adequate
solution.

d. Acknowledge that this group’s job is not to solve the problem but rather to plan, develop, and initiate a
process that can and will lead to a solution.

CC2001 Computer Science volume – 5 –
Final Report (December 15, 2001)

past reports, focusing most closely on Computing Curricula 1991. Chapter 3 outlines the
changes that have occurred in computer science since the publication of the CC1991
report and the implications that those changes have for curriculum design and pedagogy.
In Chapter 4, we articulate a set of principles that have guided the development of
CC2001 as we attempt to build on the strengths of our predecessors while avoiding some
of the problems observed in the earlier reports. Chapters 5 and 6 present overviews of the
computer science body of knowledge and the curriculum recommendations that are
examined in detail in the appendices. Chapters 7 and 8 describe the courses and
approaches we recommend at the introductory and intermediate levels of the curriculum,
respectively. Because these courses alone do not constitute a complete undergraduate
curriculum, Chapter 9 summarizes additional courses and topics that must be included as
part of the academic program. One important aspect of the complete curriculum involves
the study of professional practice, which is discussed in Chapter 10. In Chapter 11, we
outline a set of characteristics that define the successful computer science graduate.
Chapter 12 looks at the problem of teaching computer science and computing-related
skills to students in other disciplines. Finally, Chapter 13 offers strategic and tactical
suggestions for addressing the institutional challenges that affect the implementation of
this report.

The bulk of the material in the report appears in two appendices. Appendix A looks in
detail at the body of knowledge for undergraduate computer science. Appendix B
consists of full descriptions for the recommended courses that comprise the sample
curricula. We hope that providing both the body of knowledge and course descriptions
helps departments to create effective curricula more easily than using either of these
sources alone.

CC2001 Computer Science volume – 6 –
Final Report (December 15, 2001)

Chapter 2
Lessons from Past Reports

In developing this report, the CC2001 Task Force did not have to start from scratch. We
have benefited tremendously from past curriculum studies and are indebted to the authors
of those studies for their dedicated efforts. As part of our early work on Computing
Curricula 2001, we looked carefully at the most recent curriculum studies—particulary
Computing Curricula 1991—to get a sense of how those studies have influenced
computer science education. By identifying which aspects of the previous reports have
been successful and which have not, we hoped to structure the CC2001 report to
maximize its impact. This chapter offers an overview of the earlier reports and the
lessons we have taken from them.

2.1 Historical background
Efforts to design model curricula for programs in computer science and computer
engineering began in 1960s, shortly after the first departments in these areas were
established. In 1968, following on a series of earlier studies [ACM65, COSINE67,
SAC67], the Association for Computing Machinery (ACM) published Curriculum ’68
[ACM68], which offered detailed recommendations for academic programs in computer
science, along with a set of course descriptions and extensive bibliographies for each
topic area.

Over the next decade, computer science developed rapidly, to the point that the
recommendations in Curriculum ’68 became largely obsolete. During the 1970s, both the
ACM and the Computer Society of the Institute of Electrical and Electronics Engineers
(IEEE-CS) appointed committees to develop revised computer science curricula. In
1977, the Education Committee of the IEEE-CS published a report for programs in
computer science and engineering [EC77]. The Computer Society’s report was
significant in that it took a broader view of the discipline, incorporating more engineering
into the curriculum and bridging the gap between software- and hardware-oriented
programs. Responding to the pressures generated by the rapid development of the field,
the Computer Society updated its computer science and engineering curriculum in 1983
[EAB83]. The ACM Curriculum ’68 report was superseded by a much more
comprehensive Curriculum ’78, which had a substantial impact on computer science
education. Among its contributions, Curriculum ’78 proposed a standard syllabus for a
set of courses that encompassed the core knowledge of computer science as a discipline.

In the late 1980s, the Computer Society and ACM joined forces to undertake a more
ambitious curriculum review, which was published as Computing Curricula 1991
[Tucker91], hereafter referred to as CC1991. The CC1991 report was more
comprehensive than its predecessors, but took a different approach. Unlike Curriculum
’78 and the 1983 IEEE-CS report, each of which focused on identifying a standard
syllabus for individual courses, CC1991 divided the body of knowledge associated with
computer science into individual knowledge units. Each knowledge unit in CC1991
corresponds to a topic that must be covered at some point during the undergraduate
curriculum, although individual institutions have considerable flexibility to assemble the
knowledge units into course structures that fit their particular needs. The appendix of the
CC1991 report included 11 sample implementations that show how the knowledge units
can be combined to form courses and programs to serve a variety of needs.

CC2001 Computer Science volume – 7 –
Final Report (December 15, 2001)

2.2 Evaluation of previous curriculum efforts
The decision to produce a new curriculum report was driven primarily by the enormous
changes that have occurred in computer science over the past decade. At the same time,
there was also a perception among some computer science educators that CC1991 was
not as influential as some of its predecessors. Although CC1991 is certainly more
detailed, institutions have sometimes found it harder to adopt than Curriculum ’78 and
the IEEE-CS model curriculum in computer science and engineering.

In order to understand both the strengths and the limitations of CC1991, the task force
undertook an informal survey of computer science educators. We developed a short
questionnaire, which we then mailed to the chairs of all computer science departments in
the United States and Canada. We also made the questionnaire available more generally
through the World Wide Web, although the vast majority of the responses still came from
North America. A copy of the questionnaire appears in Figure 2-1.

Over 98 percent of the respondents—we received 124 responses through the web and
about 30 responses through regular mail—supported the concept of updating the CC1991
report. The survey responses also revealed the following general reactions:

• Knowledge units are often not as useful as course or curriculum designs. Although
many respondents indicated that they liked the concept of knowledge units as a
resource, there was strong sentiment for a greater emphasis on course design along
with the knowledge units. Our survey revealed that many institutions continue to work
with the curriculum models outlined in Curriculum ’78, largely because it included
specific course designs.

• There is strong support for a more concrete definition of a minimal core. CC1991
argues that all undergraduate programs in computer science should incorporate the
entire collection of knowledge units in the nine areas that comprise the common
requirements. If the area encompassing Introduction to a Programming Language is
included, the knowledge units in the common requirements account for 283 hours of
classroom time. As our discipline evolves, it is tempting to add new material to the
required set, thereby increasing the number of hours mandated by the curriculum. Our
survey revealed considerable support for the idea of identifying a smaller set of core
topics that would serve as a foundation for more advanced study. The areas and

Figure 2-1. Questionnaire to assess the impact of Computing Curricula 1991

1. Did you use CC1991 in any way in the past?
2. If you are a college or university teacher, do you know if your department ever

looked at or used CC1991?
3. If you answered yes to either question, how was it used, and what features of it were

helpful?
4. Do you think there is a need to create CC2001? Why?
5. CC1991 had 10 main content areas. Do you think any new areas should be added?

Any existing area deleted? Any existing area updated?
6. Do you believe CC2001 should provide guidelines about a minimal core? If so,

what would that core include?
7. Do you have any suggestion about the format? CC1991 was designed in terms of

knowledge units along with possible model curricula in terms of those knowledge
units.

8. Have you any other comments or suggestions for updating CC1991?

CC2001 Computer Science volume – 8 –
Final Report (December 15, 2001)

structure of the more advanced courses could vary markedly depending on the nature
of the institution, the academic program, and the needs and interests of individual
students.

• Curriculum reports should pay greater attention to accreditation criteria for computer
science programs. Accreditation was an important issue for many survey respondents
in the United States. It is important to note, however, that the structure of accreditation
has changed markedly with the new criteria proposed by the Accreditation Board for
Engineering and Technology (ABET) and the Computing Sciences Accreditation
Board (CSAB) [ABET2000, CSAB2000]. Under the new guidelines, programs will be
allowed much greater flexibility than they have enjoyed in the past but must provide a
coherent rationale for their curriculum and demonstrate that it meets its stated goals.
This report is designed not only to help institutions design their computer science
curriculum but also to assist them in the preparation of the underlying rationale they
need to meet the new accreditation criteria. We also hope that this report will prove
useful to accreditation bodies in other parts of the world.

CC2001 Computer Science volume – 9 –
Final Report (December 15, 2001)

Chapter 3
Changes in the Computer Science Discipline

As we enter the new millennium, computer science is an enormously vibrant field. From
its inception just half a century ago, computing has become the defining technology of
our age. Computers are integral to modern culture and are the primary engine behind
much of the world’s economic growth. The field, moreover, continues to evolve at an
astonishing pace. New technologies are introduced continually, and existing ones
become obsolete almost as soon as they appear.

The rapid evolution of the discipline has a profound effect on computer science
education, affecting both content and pedagogy. When CC1991 was published, for
example, networking was not seen as a major topic area, accounting for only six hours in
the common requirements. The lack of emphasis on networking is not particularly
surprising. After all, networking was not yet a mass-market phenomenon, and the World
Wide Web was little more than an idea in the minds of its creators. Today, networking
and the web have become the underpinning for much of our economy. They have
become critical foundations of computer science, and it is impossible to imagine that
undergraduate programs would not devote significantly more time to this topic. At the
same time, the existence of the web has changed the nature of the educational process
itself. Modern networking technology enhances everyone’s ability to communicate and
gives people throughout the world unprecedented access to information. In most
academic programs today—not only in computer science but in other fields as well—
networking technology has become an essential pedagogical tool.

The charter of the CC2001 Task Force requires us to “review the Joint ACM and
IEEE/CS Computing Curricula 1991 and develop a revised and enhanced version for the
year 2001 that will match the latest developments of computing technologies.” To do so,
we felt it was important to spend part of our effort getting a sense of what aspects of
computer science had changed over the last decade. We believe that these changes fall
into two categories—technical and cultural—each of which have a significant effect on
computer science education. The major changes in each of these categories are described
in the individual sections that follow.

3.1 Technical changes
Much of the change that affects computer science comes from advances in technology.
Many of these advances are part of a ongoing evolutionary process that has continued for
many years. Moore’s Law—the 1965 prediction by Intel founder Gordon Moore that
microprocessor chip density would double every eighteen months—continues to hold
true. As a result, we have seen exponential increases in available computing power that
have made it possible to solve problems that would have been out of reach just a few
short years ago. Other changes in the discipline, such as the rapid growth of networking
after the appearance of the World Wide Web, are more dramatic, suggesting that change
also occurs in revolutionary steps. Both evolutionary and revolutionary change affects
the body of knowledge required for computer science and the educational process.

Technical advances over the past decade has increased the importance of many curricular
topics, such as the following:

• The World Wide Web and its applications
• Networking technologies, particularly those based on TCP/IP

CC2001 Computer Science volume – 10 –
Final Report (December 15, 2001)

• Graphics and multimedia
• Embedded systems
• Relational databases
• Interoperability
• Object-oriented programming
• The use of sophisticated application programmer interfaces (APIs)
• Human-computer interaction
• Software safety
• Security and cryptography
• Application domains

As these topics increase in prominence, it is tempting to include them as undergraduate
requirements. Unfortunately, the restrictions of most degree programs make it difficult to
add new topics without taking others away. It is often impossible to cover new areas
without reducing the amount of time devoted to more traditional topics whose importance
has arguably faded with time. The CC2001 Task Force has therefore sought to reduce the
required level of coverage in most areas so as to make room for new areas. This point is
discussed further in Chapter 4.

3.2 Cultural changes
Computing education is also affected by changes in the cultural and sociological context
in which it occurs. The following changes, for example, have all had an influence on the
nature of the educational process:

• Changes in pedagogy enabled by new technologies. The technical changes that have
driven the recent expansion of computing have direct implications on the culture of
education. Computer networks, for example, make distance education much more
feasible, leading to enormous growth in this area. Those networks also make it much
easier to share curricular resources among widely distributed institutions. Technology
also affects the nature of pedagogy. Demonstration software, computer projection, and
individual laboratory stations have made a significant difference in the way computer
science is taught. The design of computer science curricula must take into account
those changing technologies.

• The dramatic growth of computing throughout the world. Computing has expanded
enormously over the last decade. For example, in 1990, few households—even in the
United States—were connected to the Internet. A U.S. Department of Commerce
study [NTIA99] revealed that by 1999 over a third of all Americans had Internet
access from some location. Similar growth patterns have occurred in most other
countries as well. The explosion in the access to computing brings with it many
changes that affect education, including a general increase in the familiarity of students
with computing and its applications along with a widening gap between the skill levels
of those that have had access and those who have not.

• The growing economic influence of computing technology. The dramatic excitement
surrounding high-tech industry, as evidenced by the Internet startup fever of the past
five years, has significant effects on education and its available resources. The
enormous demand for computing expertise and the vision of large fortunes to be made
has attracted many more students to the field, including some who have little intrinsic
interest in the material. At the same time, the demand from industry has made it
harder for most institutions to attract and retain faculty, imposing significant limits on
the capacity of those institutions to meet the demand.

CC2001 Computer Science volume – 11 –
Final Report (December 15, 2001)

• Greater acceptance of computer science as an academic discipline. In its early years,
computer science had to struggle for legitimacy in many institutions. It was, after all, a
new discipline without the historical foundations that support most academic fields.
To some extent, this problem persisted through the creation of CC1991, which was
closely associated with the Computing as a Discipline report [Denning89]. Partly as a
result of the entry of computing technology into the cultural and economic
mainstream, the battle for legitimacy has largely been won. On many campuses,
computer science has become one of the largest and most active disciplines. There is
no longer any need to defend the inclusion of computer science education within the
academy. The problem today is to find ways to meet the demand.

• Broadening of the discipline. As our discipline has grown and gained legitimacy, it
has also broadened in scope. In its early years, computing was primarily focused on
computer science. Over the years, an increasing number of fields have become part of
a much larger, more encompassing discipline of computing. Our CC2001 Task Force
believes that understanding how those specialties fit together and how the broadening
of the discipline affects computer science education must be a critical component of
our work.

CC2001 Computer Science volume – 12 –
Final Report (December 15, 2001)

Chapter 4
Principles

Based on our analysis of past curriculum reports and the changes in our discipline
outlined in the preceding chapters, the CC2001 Task Force has articulated the following
principles to guide our work:

1. Computing is a broad field that extends well beyond the boundaries of computer
science. A single report that covers only computer science cannot address the full
range of issue that colleges and universities must consider as they seek to address
their computing curricula. Additional reports in this series will be required to cover
other computing disciplines.

2. Computer science draws its foundations from a wide variety of disciplines.
Undergraduate study of computer science requires students to utilize concepts from
many different fields. All computer science students must learn to integrate theory
and practice, to recognize the importance of abstraction, and to appreciate the value
of good engineering design.

3. The rapid evolution of computer science requires an ongoing review of the
corresponding curriculum. Given the pace of change in our discipline, the process
of updating the curriculum once a decade has become unworkable. The professional
associations in this discipline must establish an ongoing review process that allows
individual components of the curriculum recommendations to be updated on a
recurring basis.

4. Development of a computer science curriculum must be sensitive to changes in
technology, new developments in pedagogy, and the importance of lifelong learning.
In a field that evolves as rapidly as computer science, educational institutions must
adopt explicit strategies for responding to change. Institutions, for example, must
recognize the importance of remaining abreast of progress in both technology and
pedagogy, subject to the constraints of available resources. Computer science
education, moreover, must seek to prepare students for lifelong learning that will
enable them to move beyond today’s technology to meet the challenges of the
future.

5. CC2001 must go beyond knowledge units to offer significant guidance in terms of
individual course design. Although the knowledge-unit structure used in CC1991
can serve as a useful framework, most institutions need more detailed guidance. For
such institutions, CC2001 will be effective only to the extent that it defines a small
set of alternative models—preferably between two and four—that assemble the
knowledge units into reasonable, easily implemented courses. Articulating a set of
well-defined models will make it easier for institutions to share pedagogical
strategies and tools. It will also provide a framework for publishers who provide the
textbooks and other materials for those courses.

6. CC2001 should seek to identify the fundamental skills and knowledge that all
computing students must possess. Despite the enormous breadth of computer
science, there are nonetheless concepts and skills that are common to computing as a
whole. CC2001 must attempt to define the common themes of the discipline and
make sure that all undergraduate programs include this material.

7. The required body of knowledge must be made as small as possible. As computer
science has grown, the number of topics required in the undergraduate curriculum
has grown as well. Over the last decade, computer science has expanded to such an
extent that it is no longer possible simply to add new topics without taking others

CC2001 Computer Science volume – 13 –
Final Report (December 15, 2001)

away. We believe that the best strategic approach is to reduce the number of topics
in the required core so that it consists only of those topics for which there is a broad
consensus that the topic is essential to undergraduate degrees. Coverage of the core
is not limited to introductory courses, but will extend throughout the curriculum. At
the same time, it is important to recognize that this core does not constitute a
complete undergraduate curriculum, but must be supplemented by additional
courses that may vary by institution, degree program, or individual student.

8. CC2001 must strive to be international in scope. Despite the fact that curricular
requirements differ from country to country, CC2001 is intended to be useful to
computing educators throughout the world. Although it will be strongly influenced
by educational practice in the United States, we will make every effort to ensure that
the curriculum recommendations are sensitive to national and cultural differences so
that they will be widely applicable throughout the world.

9. The development of CC2001 must be broadly based. To be successful, the process
of creating the CC2001 recommendations must include participation from many
different constituencies including industry, government, and the full range of higher
educational institutions involved in computer science education.

10. CC2001 must include professional practice as an integral component of the
undergraduate curriculum. These practices encompass a wide range of activites
including management, ethics and values, written and oral communication, working
as part of a team, and remaining current in a rapidly changing discipline. We further
endorse the position articulated in the CC1991 report that “mastery of the discipline
includes not only an understanding of basic subject matter, but also an
understanding of the applicability of the concepts to real-world problems.”

11. CC2001 must include discussions of strategies and tactics for implementation along
with high-level recommendations. Although it is important for Computing Curricula
2001 to articulate a broad vision of computing education, the success of any
curriculum depends heavily on implementation details. CC2001 must provide
institutions with advice on the practical concerns of setting up a curriculum by
including sections on strategy and tactics along with technical descriptions of the
curricular material.

As one would expect in any project of this scale, it is clear in retrospect that the CC2001
Task Force has been more successful in implementing some of these principles than we
have in others. We have, for example, been less successful in terms of producing an
international document than we had hoped. The structure of undergraduate degrees
varies enormously around the world, to the point that it is impossible to articulate a single
set of recommendations that would work throughout the world. Although we have
included in Chapter 9 examples of curricular implementations designed for use in other
countries, the structure of computing education in the United States has had a profound
impact on the report. Similarly, we were unable to get as much feedback and
involvement as we would like from industry. We do, however, see curriculum
development as an ongoing process and hope that companies can become more engaged
in the curriculum-development process with individual institutions.

At the same time, we believe that we have maintained our commitment to keeping the
size of the core to a manageable level that nonetheless ensures that graduates have a solid
foundation in the field. Moreover, we are confident that the material in Appendix A and
Appendix B will provide enough detail about the underlying material and the structure of
appropriate courses to be of value to curriculum planners throughout the world.

CC2001 Computer Science volume – 14 –
Final Report (December 15, 2001)

Chapter 5
Overview of the CS Body of Knowledge

In developing a curriculum for undergraduate study in computer science, one of the first
steps is to identify and organize the material that would be appropriate for that level. As
noted in Chapter 1, the CC2001 Task Force sought to accomplish this goal by convening
a set of knowledge focus groups, assigning to each one the responsibility of defining the
body of knowledge associated with one of the following areas:

Discrete Structures (DS)
Programming Fundamentals (PF)
Algorithms and Complexity (AL)
Architecture and Organization (AR)
Operating Systems (OS)
Net-Centric Computing (NC)
Programming Languages (PL)
Human-Computer Interaction (HC)
Graphics and Visual Computing (GV)
Intelligent Systems (IS)
Information Management (IM)
Social and Professional Issues (SP)
Software Engineering (SE)
Computational Science and Numerical Methods (CN)

Each of the knowledge focus groups submitted a report to the CC2001 Task Force, which
reviewed those reports to determine whether the recommendations made by that group
was appropriate in the context of the curriculum as a whole.

5.1 Structure of the body of knowledge
The CS body of knowledge is organized hierarchically into three levels. The highest
level of the hierarchy is the area, which represents a particular disciplinary subfield.
Each area is identified by a two-letter abbreviation, such as OS for operating systems or
PL for programming languages. The areas are broken down into smaller divisions called
units, which represent individual thematic modules within an area. Each unit is
identified by adding a numeric suffix to the area name; as an example, OS3 is a unit on
concurrency. Each unit is further subdivided into a set of topics, which are the lowest
level of the hierarchy.

5.1.1 Core and elective units
As discussed in Chapter 4, one of our goals in proposing curricular recommendations is
to keep the required component of the body of knowledge as small as possible. To
implement this principle, the CC2001 Task Force has defined a minimal core consisting
of those units for which there is a broad consensus that the corresponding material is
essential to anyone obtaining an undergraduate degree in this field. Units that are taught
as part of an undergraduate program but which fall outside the core are considered to be
elective.

CC2001 Computer Science volume – 15 –
Final Report (December 15, 2001)

In discussing the CC2001 recommendations during their development, we have found
that it helps to emphasize the following points:

• The core refers to those units required of all students in all computer science degree
programs. Several topics that are important in the education of many students are not
included in the core. This lack of inclusion in the core does not imply a negative
judgment about the value, importance, or relevance of those topics. Rather, it simply
means that there was not a broad consensus that the topic should be required of every
student in every computer science degree program.

• The core is not a complete curriculum. Because the core is defined as minimal, it does
not, by itself, constitute a complete undergraduate curriculum.

• The core must be supplemented by additional material. Every undergraduate program
must include additional elective topics from the body of knowledge. The CC2001
report does not define what those topics must be, as this additional work can and
should vary based on institutional mission, the areas of concentration offered by a
given institution, and individual student choice.

• Core units are not necessarily those taken in a set of introductory courses early in the
undergraduate curriculum. Although many of the units defined as core are indeed
introductory, there are also some core units that clearly must be covered only after
students have developed significant background in the field. For example, the task
force believes that all students must develop a significant application as some point
during their undergraduate program. The material that is essential to successful
management of projects at this scale is therefore part of the core, since it is required of
all students. At the same time, the project course experience is very likely to come
toward the end of a student’s undergraduate program. Similarly, introductory courses
may include elective units alongside the coverage of core material. The designation
core simply means required and says nothing about the level of the course in which it
appears.

5.1.2 Assessing the time required to cover a unit
To give readers a sense of the time required to cover a particular unit, the CC2001 report
must define a metric that establishes a standard of measurement. Choosing such a metric
has proven difficult, because no standard measure is recognized throughout the world.
For consistency with the earlier curriculum reports, the task force has chosen to express
time in hours, corresponding to the in-class time required to present the material in a
traditional lecture-oriented format. To dispel any potential confusion, however, it is
important to underscore the following observations about the use of lecture hours as a
measure:

• The task force does not seek to endorse the lecture format. Even though we have used
a metric with its roots in a classical, lecture-oriented form, the task force believes that
there are other styles—particularly given recent improvements in educational
technology—that can be at least as effective. For some of these styles, the notion of
hours may be difficult to apply. Even so, the time specifications should at least serve
as a comparative measure, in the sense that a 5-hour unit will presumably take roughly
five times as much time to cover as a 1-hour unit, independent of the teaching style.

• The hours specified do not include time spent outside of class. The time assigned to a
unit does not include the instructor’s preparation time or the time students spend
outside of class. As a general guideline, the amount of out-of-class work is
approximately three times the in-class time. Thus, a unit that is listed as requiring 3
hours will typically entail a total of 12 hours (3 in class and 9 outside).

CC2001 Computer Science volume – 16 –
Final Report (December 15, 2001)

• The hours listed for a unit represent a minumum level of coverage. The time
measurements we have assigned for each unit should be interpreted as the minimum
amount of time necessary to enable a student to achieve the learning objectives for that
unit. It is always appropriate to spend more time on a unit than the mandated
minimum.

5.1.3 Packaging units into courses
The structure and format of courses vary significantly from institution to institution and
from country to country. Even within the United States, some colleges and universities
use a semester system while others follow a shorter quarter system. Under either system,
there can be differences in the number of weeks in a semester, the number of lectures in a
week, and the number of minutes in a lecture.

For the purposes of this report, we assume that a course meets three times a week over
the course of a 15-week semester and that the individual class meetings run somewhere
between 50 minutes and an hour. This schedule is typical for a 3-credit semester course
in the United States. Given that some of the available time will be taken up with
examinations and other activities, we have assumed that 40 hours of lecture are available
over the semester. In addition, students are expected to devote three hours of time
outside of class for each in-class hour, which means that the total time that each student is
expected to invest 160 hours in each course. Other countries use different metrics for
expressing the expected level of work. In the United Kingdom, for example, a course
described in this report would correspond to 15-16 points under the Credit Accumulation
and Transfer Scheme (CATS).

5.2 Summary of the CS body of knowledge
A summary of the body of knowledge—showing the areas, units, which units are core,
and the minimum time required for each—appears as Figure 5-1. The details of the body
of knowledge appear in Appendix A.

CC2001 Computer Science volume – 17 –
Final Report (December 15, 2001)

Figure 5-1. Computer science body of knowledge with core topics underlined

DS. Discrete Structures (43 core hours)
DS1. Functions, relations, and sets (6)
DS2. Basic logic (10)
DS3. Proof techniques (12)
DS4. Basics of counting (5)
DS5. Graphs and trees (4)
DS6. Discrete probability (6)

PF. Programming Fundamentals (38 core hours)
PF1. Fundamental programming constructs (9)
PF2. Algorithms and problem-solving (6)
PF3. Fundamental data structures (14)
PF4. Recursion (5)
PF5. Event-driven programming (4)

AL. Algorithms and Complexity (31 core hours)
AL1. Basic algorithmic analysis (4)
AL2. Algorithmic strategies (6)
AL3. Fundamental computing algorithms (12)
AL4. Distributed algorithms (3)
AL5. Basic computability (6)
AL6. The complexity classes P and NP
AL7. Automata theory
AL8. Advanced algorithmic analysis
AL9. Cryptographic algorithms
AL10. Geometric algorithms
AL11. Parallel algorithms

AR. Architecture and Organization (36 core hours)
AR1. Digital logic and digital systems (6)
AR2. Machine level representation of data (3)
AR3. Assembly level machine organization (9)
AR4. Memory system organization and architecture (5)
AR5. Interfacing and communication (3)
AR6. Functional organization (7)
AR7. Multiprocessing and alternative architectures (3)
AR8. Performance enhancements
AR9. Architecture for networks and distributed systems

OS. Operating Systems (18 core hours)
OS1. Overview of operating systems (2)
OS2. Operating system principles (2)
OS3. Concurrency (6)
OS4. Scheduling and dispatch (3)
OS5. Memory management (5)
OS6. Device management
OS7. Security and protection
OS8. File systems
OS9. Real-time and embedded systems
OS10. Fault tolerance
OS11. System performance evaluation
OS12. Scripting

NC. Net-Centric Computing (15 core hours)
NC1. Introduction to net-centric computing (2)
NC2. Communication and networking (7)
NC3. Network security (3)
NC4. The web as an example of client-server computing (3)
NC5. Building web applications
NC6. Network management
NC7. Compression and decompression
NC8. Multimedia data technologies
NC9. Wireless and mobile computing

PL. Programming Languages (21 core hours)
PL1. Overview of programming languages (2)
PL2. Virtual machines (1)
PL3. Introduction to language translation (2)
PL4. Declarations and types (3)
PL5. Abstraction mechanisms (3)
PL6. Object-oriented programming (10)
PL7. Functional programming
PL8. Language translation systems
PL9. Type systems
PL10. Programming language semantics
PL11. Programming language design

Note: The numbers in parentheses represent the minimum
number of hours required to cover this material in a lecture
format. It is always appropriate to include more.

HC. Human-Computer Interaction (8 core hours)
HC1. Foundations of human-computer interaction (6)
HC2. Building a simple graphical user interface (2)
HC3. Human-centered software evaluation
HC4. Human-centered software development
HC5. Graphical user-interface design
HC6. Graphical user-interface programming
HC7. HCI aspects of multimedia systems
HC8. HCI aspects of collaboration and communication

GV. Graphics and Visual Computing (3 core hours)
GV1. Fundamental techniques in graphics (2)
GV2. Graphic systems (1)
GV3. Graphic communication
GV4. Geometric modeling
GV5. Basic rendering
GV6. Advanced rendering
GV7. Advanced techniques
GV8. Computer animation
GV9. Visualization
GV10. Virtual reality
GV11. Computer vision

IS. Intelligent Systems (10 core hours)
IS1. Fundamental issues in intelligent systems (1)
IS2. Search and constraint satisfaction (5)
IS3. Knowledge representation and reasoning (4)
IS4. Advanced search
IS5. Advanced knowledge representation and reasoning
IS6. Agents
IS7. Natural language processing
IS8. Machine learning and neural networks
IS9. AI planning systems
IS10. Robotics

IM. Information Management (10 core hours)
IM1. Information models and systems (3)
IM2. Database systems (3)
IM3. Data modeling (4)
IM4. Relational databases
IM5. Database query languages
IM6. Relational database design
IM7. Transaction processing
IM8. Distributed databases
IM9. Physical database design
IM10. Data mining
IM11. Information storage and retrieval
IM12. Hypertext and hypermedia
IM13. Multimedia information and systems
IM14. Digital libraries

SP. Social and Professional Issues (16 core hours)
SP1. History of computing (1)
SP2. Social context of computing (3)
SP3. Methods and tools of analysis (2)
SP4. Professional and ethical responsibilities (3)
SP5. Risks and liabilities of computer-based systems (2)
SP6. Intellectual property (3)
SP7. Privacy and civil liberties (2)
SP8. Computer crime
SP9. Economic issues in computing
SP10. Philosophical frameworks

SE. Software Engineering (31 core hours)
SE1. Software design (8)
SE2. Using APIs (5)
SE3. Software tools and environments (3)
SE4. Software processes (2)
SE5. Software requirements and specifications (4)
SE6. Software validation (3)
SE7. Software evolution (3)
SE8. Software project management (3)
SE9. Component-based computing
SE10. Formal methods
SE11. Software reliability
SE12. Specialized systems development

CN. Computational Science (no core hours)
CN1. Numerical analysis
CN2. Operations research
CN3. Modeling and simulation
CN4. High-performance computing

CC2001 Computer Science volume – 18 –
Final Report (December 15, 2001)

Chapter 6
Overview of the Curricular Models

The body of knowledge presented in Chapter 5 does not by itself constitute a curriculum.
To be useful, the CC2001 report must also define detailed course implementations and
strategies for assembling the individual courses into a complete undergraduate
curriculum. This chapter presents a brief description of the overall philosophy behind the
proposed curricular models. The descriptions of the courses themselves appear in
Appendix B.

6.1 Overall structure of the model curricula
The courses described in this report are divided into three categories according to the
level at which they occur in the curriculum. Courses designated as introductory are
typically entry-level courses offered in the first or second year of a college or university
curriculum. Courses listed as intermediate are usually second- or third-year courses and
build a foundation for further study in the field. Courses designated as advanced are
taken in later years and focus on those topics that require significant preparation in terms
of earlier coursework.

While these distinctions are easy to understand in their own right, it is important to
recognize that there is no necessary relationship between the level of the course and the
notions of core and elective, which apply only to units in the body of knowledge.
Although introductory and intermediate courses will certainly concentrate on core
material, it is perfectly reasonable to include some elective material even in the earliest
courses. Similarly, advanced courses will sometimes include some core material. These
designations are independent and should not be confused.

6.2 Overview of the implementation strategies
The point of establishing the distinction among introductory, intermediate, and advanced
courses is to provide natural boundaries for selecting implementation strategies. This
report, for example, defines six distinct instantiations of the introductory curriculum and
four thematic approaches to the intermediate courses. These implementations and their
relationship in the structure of the curriculum as a whole are illustrated in Figure 6-1.
The idea behind this structure is to offer greater flexibility by making it possible to start
with any of the introductory approaches and then follow up that introduction with any of
the intermediate approaches.

Figure 6-1. Course levels and implementation strategies

Additional courses used to complete the undergraduate program

AlgorithmsObjects Functional Breadth HardwareIntroductory

Intermediate

Advanced

courses

courses

courses

first first first first first
Imperative

first

approach
Compressed

approach
Systems-based

approach
Web-based
approach

Topic-based

CC2001 Computer Science volume – 19 –
Final Report (December 15, 2001)

6.3 Managing the transition between different strategies
Given that the implementation strategies adopt different approaches and cover different
material, it is difficult to make the various tracks directly interchangeable. To offer
institutions as much flexibility as possible, we have tried to eliminate significant
transition problems by adopting the following policies:

• We have established a set of expectations for the introductory approaches in the form
of a set of units and topics that each of those approaches must cover. The details of
this coverage are outlined in Chapter 7. Given these guidelines for the introductory
coverage, intermediate courses can always depend on a certain level of preparation for
students emerging from any of the introductory tracks. This definition of a common
background at the end of a student’s introductory work should also make it easier for
institutions to meet the needs of students transferring from other programs.

• Where possible, we have left unscheduled time in each course syllabus, both to give
instructors flexibility and to allow for the inclusion of transitional material.

• We have allowed the material covered at the various levels of the curriculum to
overlap to a certain extent. If an intermediate or advanced course depends on material
that is covered by some but not all of the introductory tracks, we have included explicit
coverage of that material in the follow-on course to ensure that all possible
combinations of strategies can be made to work.

6.4 Covering the core
As illustrated in Figure 6-1, a complete undergraduate curriculum consists of an
introductory phase to establish basic foundations for further study, an intermediate phase
to cover most of the core units in the body of knowledge, and additional advanced
courses to round out the curriculum. Institutions that adopt the CC2001 model will
typically begin by choosing an implementation for the introductory phase and an
implementation for the intermediate phase. In most cases, institutions will then adapt
each of these implementations to fit the particular characteristics of the institution, the
preferences of the faculty, and the needs of the students. In doing so, it is important to
ensure that the curriculum that results includes at least the minimum coverage specified
in the core of the body of knowledge. If specific core units are not included in the
introductory and intermediate phase, the institution must then ensure that students acquire
this material in advanced courses and set the requirements for graduation accordingly.
Beyond the coverage of the computer science core, institutions must ensure that students
acquire the necessary background in other areas, as described in Chapter 9.

Figures 6-2 and 6-3 show two examples of how to combine the courses from Appendix B
so that they cover the computer science core. The model in Figure 6-2 uses the
imperative-first implementation for the introductory phase and a traditional topics-based
model for the intermediate courses; the model in Figure 6-3 uses an objects-first
introductory strategy and the compressed approach for the intermediate level. Other
combinations will work as well. To help potential adopters determine whether a set of
courses covers the core, the CC2001 web site includes a curriculum worksheet
implemented as a Java applet.

The tables shown in Figures 6-2 and 6-3 also illustrate the importance of redundant
coverage in ensuring that the individual models are interchangeable. The final column in
each table shows the number of additional hours allocated to the various units under that
combination. The entry for PL3 (Introduction to language translation) in Figure 6-2, for
example, indicates that the two core hours assigned to this unit are included in both
CS112I and CS210T. Adopters choosing this pair of strategies could either leave the
coverage out of one of the courses, thereby making time for additional topics, or include
it in both to reinforce the students’ understanding of the material.

Figure 6-2. Coverage of core units
Imperative-first introduction
Traditional topic-based approach

C
S1

11
I.

In
tr

o
to

 P
ro

gr
am

m
in

g
C

S1
12

I.
D

at
a

A
bs

tr
ac

tio
n

C
S1

15
. D

is
cr

et
e

St
ru

ct
ur

es
C

S2
10

T
. A

lg
or

ith
m

 A
na

ly
si

s
C

S2
20

T
. C

om
pu

te
r

A
rc

hi
te

ct
ur

e
C

S2
25

T
. O

pe
ra

tin
g

Sy
st

em
s

C
S2

30
T
. N

et
-c

en
tr

ic
 C

om
pu

tin
g

C
S2

60
T
. A

rt
if

ic
ia

l I
nt

el
lig

en
ce

C
S2

70
T
. D

at
ab

as
es

C
S2

80
T
. S

oc
ia

l a
nd

 P
ro

f
Is

su
es

C
S2

90
T
. S

of
tw

ar
e

D
ev

el
op

m
en

t
C

S4
90

. C
ap

st
on

e
Pr

oj
ec

t
T

ot
al

E
xt

ra
 h

ou
rs

DS1. Functions, relations, and sets 6 6
DS2. Basic logic 10 10
DS3. Proof techniques 9 3 12
DS4. Basics of counting 5 5
DS5. Graphs and trees 2 4 6 +2
DS6. Discrete probability 6 6
PF1. Fundamental programming constructs 9 9
PF2. Algorithms and problem-solving 3 3 6
PF3. Fundamental data structures 6 6 3 15 +1
PF4. Recursion 5 5
PF5. Event-driven programming 2 4 6 +2
AL1. Basic algorithmic analysis 2 2 4
AL2. Algorithmic strategies 6 6
AL3. Fundamental computing algorithms 2 4 6 12
AL4. Distributed algorithms 3 3
AL5. Basic computability 1 6 7 +1
AR1. Digital logic and digital systems 3 3 6
AR2. Machine level representation of data 1 3 4 +1
AR3. Assembly level machine organization 2 9 11 +2
AR4. Memory system organization and architecture 5 5
AR5. Interfacing and communication 3 3
AR6. Functional organization 7 7
AR7. Multiprocessing and alternative architectures 3 3
OS1. Overview of operating systems 2 2
OS2. Operating system principles 2 2
OS3. Concurrency 6 6
OS4. Scheduling and dispatch 3 3
OS5. Memory management 5 5
NC1. Introduction to net-centric computing 2 2
NC2. Communication and networking 7 7
NC3. Network security 3 3
NC4. The web as an example of client-server computing 3 3
PL1. Overview of programming languages 1 1 2
PL2. Virtual machines 1 1
PL3. Introduction to language translation 2 2 4 +2
PL4. Declarations and types 1 2 3
PL5. Abstraction mechanisms 2 1 3
PL6. Object-oriented programming 3 7 2 12 +2
HC1. Foundations of human-computer interaction 2 6 2 10 +4
HC2. Building a simple graphical user interface 2 2
GV1. Fundamental techniques in graphics 2 2 4 +2
GV2. Graphic systems 1 1
IS1. Fundamental issues in intelligent systems 1 1
IS2. Search and constraint satisfaction 5 5
IS3. Knowledge representation and reasoning 4 4
IM1. Information models and systems 3 3
IM2. Database systems 3 3
IM3. Data modeling 4 4
SP1. History of computing 1 1 2 +1
SP2. Social context of computing 3 3
SP3. Methods and tools of analysis 2 2
SP4. Professional and ethical responsibilities 3 3
SP5. Risks and liabilities of computer-based systems 2 2
SP6. Intellectual property 3 3 6 +3
SP7. Privacy and civil liberties 2 2 4 +2
SE1. Software design 2 2 2 4 10 +2
SE2. Using APIs 2 3 3 8 +3
SE3. Software tools and environments 1 2 2 3 8 +5
SE4. Software processes 2 2
SE5. Software requirements and specifications 1 2 2 5 +1
SE6. Software validation 1 1 3 5 +2
SE7. Software evolution 2 2 4 +1
SE8. Software project management 2 3 5 +2

39 39 39 35 33 21 19 10 17 16 29 24

CC2001 Computer Science volume – 20 –
Final Report (December 15, 2001)

Figure 6-3. Coverage of core units
Objects-first introduction
Compressed approach

C
S1

11
O
. O

O
 P

ro
gr

am
m

in
g

C
S2

10
C
. A

lg
or

ith
m

 A
na

ly
si

s
C

S2
20

C
. C

om
pu

te
r

A
rc

hi
te

ct
ur

e
C

S2
26

C
. O

S
an

d
N

et
w

or
ki

ng
C

S2
62

C.
 I

nf
o+

K
no

w
le

dg
e

M
gm

t
C

S2
92

C
. S

of
tw

ar
e

D
ev

 a
nd

 P
ra

ct
ic

e
T

ot
al

C
S1

12
O

. O
O

 D
es

ig
n

C
S1

15
. D

is
cr

et
e

St
ru

ct
ur

es

E
xt

ra
 h

ou
rs

DS1. Functions, relations, and sets 6 6
DS2. Basic logic 10 10
DS3. Proof techniques 9 3 12
DS4. Basics of counting 5 5
DS5. Graphs and trees 4 4
DS6. Discrete probability 6 6
PF1. Fundamental programming constructs 7 2 9
PF2. Algorithms and problem-solving 2 2 3 7 +1
PF3. Fundamental data structures 3 8 3 14
PF4. Recursion 2 3 5
PF5. Event-driven programming 2 2 2 6 +2
AL1. Basic algorithmic analysis 2 2 4
AL2. Algorithmic strategies 2 6 8 +2
AL3. Fundamental computing algorithms 3 3 6 12
AL4. Distributed algorithms 3 3
AL5. Basic computability 1 6 7 +1
AR1. Digital logic and digital systems 3 3 6
AR2. Machine level representation of data 3 3
AR3. Assembly level machine organization 9 9
AR4. Memory system organization and architecture 5 5
AR5. Interfacing and communication 3 3
AR6. Functional organization 7 7
AR7. Multiprocessing and alternative architectures 3 3
OS1. Overview of operating systems 2 2
OS2. Operating system principles 2 2
OS3. Concurrency 6 6
OS4. Scheduling and dispatch 3 3
OS5. Memory management 5 5
NC1. Introduction to net-centric computing 2 2
NC2. Communication and networking 7 7
NC3. Network security 3 3
NC4. The web as an example of client-server computing 3 3
PL1. Overview of programming languages 2 2
PL2. Virtual machines 1 1
PL3. Introduction to language translation 2 2
PL4. Declarations and types 2 1 3
PL5. Abstraction mechanisms 1 2 3
PL6. Object-oriented programming 8 4 2 14 +4
HC1. Foundations of human-computer interaction 1 4 2 7 +1
HC2. Building a simple graphical user interface 2 2
GV1. Fundamental techniques in graphics 2 2 4 +2
GV2. Graphic systems 1 1
IS1. Fundamental issues in intelligent systems 1 1
IS2. Search and constraint satisfaction 5 5
IS3. Knowledge representation and reasoning 4 4
IM1. Information models and systems 3 3
IM2. Database systems 3 3
IM3. Data modeling 4 4
SP1. History of computing 1 1
SP2. Social context of computing 3 3
SP3. Methods and tools of analysis 2 2
SP4. Professional and ethical responsibilities 3 3
SP5. Risks and liabilities of computer-based systems 1 2 3 +1
SP6. Intellectual property 3 3
SP7. Privacy and civil liberties 2 2
SE1. Software design 2 2 4 8
SE2. Using APIs 1 1 3 5
SE3. Software tools and environments 2 1 3
SE4. Software processes 2 2
SE5. Software requirements and specifications 1 3 4
SE6. Software validation 1 2 3
SE7. Software evolution 3 3
SE8. Software project management 3 3
Total core hours per course 38 40 39 35 33 40 29 40

CC2001 Computer Science volume – 21 –
Final Report (December 15, 2001)

CC2001 Computer Science volume – 22 –
Final Report (December 15, 2001)

Chapter 7
Introductory Courses

This chapter looks at the introductory phase of the undergraduate curriculum, when
students receive their first college-level exposure to computer science. Section 7.1
outlines our overall philosophy concerning the introductory curriculum. Sections 7.2,
7.3, and 7.4 then look at three topics that are central to the design of introductory courses:
the role of programming, the length of the introductory sequence, and strategies for
integrating discrete mathematics. Section 7.5 goes on to enumerate the set of concepts,
knowledge, and skills that we believe should be part of an ideal introductory sequence.
Finally, section 7.6 enumerates a set of six introductory strategies that have proven
successful in practice. This section also provides critiques of each approach as an aid to
help faculty make informed decisions about which of the alternatives best address the
needs of their students, their department, their institution, and their community.

7.1 Overall philosophy
Throughout the history of computer science education, the structure of the introductory
computer science course has been the subject of intense debate. Many strategies have
been proposed over the years, most of which have strong proponents and equally strong
detractors. Like the problem of selecting an implementation language, recommending a
strategy for the introductory year of a computer science curriculum all too often takes on
the character of a religious war that generates far more heat than light.

In the interest of promoting peace among the warring factions, the CC2001 Task Force
has chosen not to recommend any single approach. The truth is that no ideal strategy has
yet been found, and that every approach has strengths and weaknesses. Given the current
state of the art in this area, we are convinced that no one-size-fits-all approach will
succeed at all institutions. Because introductory programs differ so dramatically in their
goals, structure, resources, and intended audience, we need a range of strategies that have
been validated by practice. Moreover, we must encourage institutions and individual
faculty members to continue experimentation in this area. Given a field that changes as
rapidly as computer science, pedagogical innovation is necessary for continued success.

7.2 Where does programming fit in the introductory curriculum
One of the most hotly debated questions in computer science education is the role of
programming in the introductory curriculum. Throughout the history of the discipline,
most introductory computer science courses have focused primarily on the development
of programming skills. The adoption of a programming-first introduction arises from a
number of practical and historical factors, including the following:

• Programming is an essential skill that must be mastered by anyone studying computer
science. Placing it early in the curriculum ensures that students have the necessary
facility with programming when they enroll in intermediate and advanced courses.

• Computer science did not become an academic discipline until after most institutions
had already developed a set of introductory programming courses to serve a much
wider audience. By the time our predecessors began to develop computer science
curricula, the antecedents of our introductory courses had already evolved explicitly as
“skills courses” dating from a time in which programming was regarded primarily as a
tool. Thus, computer science curricula were often built on top of existing
programming courses, which never had the opportunity to evolve into a more broadly
based introduction to computer science as a field.

CC2001 Computer Science volume – 23 –
Final Report (December 15, 2001)

• The programming-first model was implicitly endorsed by the early curriculum reports
through the design of their recommended courses. Curriculum ’68 [ACM68], for
example, begins with a course entitled “Introduction to Computing” in which the
overwhelming majority of the topics are programming-related. The centrality of
programming in introductory courses was further reinforced by the definitions of CS1
and CS2 in Curriculum ’78 [ACM78], which defined these courses as an “Introduction
to Programming” sequence.

The programming-first approach, however, has several shortcomings. The most
commonly cited objections to this approach are the following:

• Focusing on programming to the exclusion of other topics gives students a limited
sense of the discipline, thereby reinforcing the common misperception that “computer
science equals programming.”

• Theoretical topics that would enhance the students’ understanding of the practical
material are deferred to later points in the curriculum, when they no longer have the
same immediate relevance. This limitation has implications for both majors and
nonmajors. Nonmajors who take only introductory courses are deprived of any
exposure to the conceptual and intellectual foundations that underlie the revolutionary
technological developments driving change throughout society. For majors, the fact
that theory is not introduced in the early courses fuels the bias of many students who
conclude that theory is irrelevant their educational and professional needs.

• Programming courses often focus on syntax and the particular characteristics of a
programming language, leading students to concentrate on these relatively unimportant
details rather than the underlying algorithmic skills. This focus on details means that
many students fail to comprehend the essential algorithmic model that transcends
particular programming languages. Moreover, concentrating on the mechanistic
details of programming constructs often leaves students to figure out the essential
character of programming through an ad hoc process of trial and error. Such courses
thus risk leaving students who are at the very beginning of their academic careers to
flounder on their own with respect to the complex activity of programming.

• Introductory programming courses often oversimplify the programming process to
make it accessible to beginning students, giving too little weight to design, analysis,
and testing relative to the conceptually simpler process of coding. Thus, the
superficial impression students take from their mastery of programming skills masks
fundamental shortcomings that will limit their ability to adapt to different kinds of
problems and problem-solving contexts in the future.

• Programming-intensive courses disadvantage students who have no prior exposure to
computers while giving the illusion to those who have previously used computers that
they know more than they really do. As a result, students who are new to computing
are often overwhelmed, while students who have a prior background often simply
continue bad habits.

• Programming-first approaches can lead students to believe that writing a program is
the only viable approach to solving problems using a computer. The power and
versatility of application programs have increased substantially in recent years, and it
is important for students to recognize that such applications can be extremely effective
as a problem-solving tool without the need for classical programming. This concern is
particularly relevant to nonmajors, whose problem-solving abilities and sense of
empowerment can be significantly increased through a knowledge of modern
applications.

Despite these shortcomings, however, the programming-first model has proven to be
extraordinarily durable. Even though the Computing Curricula 1991 report argued

CC2001 Computer Science volume – 24 –
Final Report (December 15, 2001)

strongly for a broader introduction to the discipline, the majority of institutions continue
to focus on programming in their introductory sequence. It is important to recognize that
the programming-first model has some strengths that have led to its longevity. Of these,
the most important are the following:

• In most institutions (at least in the United States), the primary audience of the
introductory computer science course consists of students outside of computer science
who are seeking to acquire programming skills. Departments that adopt a
programming-first strategy can use a single course for computer science majors and
nonmajors alike. If an institution adopts an alternative strategy that serves only its
majors—even if it is arguably superior pedagogically—that institution may then need
to offer additional programming courses to satisfy the demand from other departments.

• Programming is a prerequisite for many advanced courses in computer science.
Curricular strategies that delay mastery of fundamental programming skills make it
harder for students to take as many advanced courses as they would like, since they do
not have the necessary background until a later point in their studies.

• Students often like programming more than other aspects of the field. Programming-
based courses therefore tend to attract more students to computer science.

• Programming courses offer skills and training that meets many of the needs expressed
by students, their near-term employers, and non-CS faculty.

The members of the CC2001 Task Force believe that the programming-first model is
likely to remain dominant for the foreseeable future. It is therefore incumbent on the task
force to provide guidance as to how to make that structure work. In addition, we
acknowledge that there appear to be serious problems inherent in that approach. To date,
no adequate resolution has emerged. Thus, it is imperative that we encourage continued
innovation and experimentation with alternative models aimed at addressing these
problems. Alternative approaches that seek to challenge the dominance of the
programming-first model, however, will have to take into account the pragmatic demands
for applicable computing skills.

In section 7.6, we offer three implementations of a programming-first model and three
that adopt an alternative paradigm. The programming-first implementations are an
imperative-first approach that uses the traditional imperative paradigm, an objects-first
approach that emphasizes early use of objects and object-oriented design, and a
functional-first approach that introduces algorithmic concepts in a language with a simple
functional syntax, such as Scheme. In each case, we have sought to identify curricular
models that minimize the weaknesses of the programming-first approach by focusing on
algorithmic and problem-solving concepts rather than the vagaries of language syntax.
The three alternative models are a breadth-first approach that begins with a general
overview of the discipline, an algorithms-first strategy that focuses on algorithms over
syntax, and a hardware-first model that begins with circuits and then builds up through
increasingly sophisticated layers in the abstract machine hierarchy.

7.3 The length of the introductory sequence
Although the philosophy and structure of introductory courses have varied widely over
the years, one aspect of the computer science curriculum has remained surprisingly
constant: the length of the introductory sequence. For several decades, the vast majority
of institutions have used a two-course sequence to introduce students to computer
science. In the computer science education community, these two courses are generally
known as CS1 and CS2, following the lead of Curriculum ’78 [ACM78]. While the
content of these courses has evolved over time in response to changes in technology and
pedagogical approach, the length of the sequence has remained the same.

CC2001 Computer Science volume – 25 –
Final Report (December 15, 2001)

We believe the time is right to question this two-course assumption. The number and
complexity of topics that entering students must understand have increased substantially,
just as the problems we ask them to solve and the tools they must use have become more
sophisticated. An increasing number of institutions are finding that a two-course
sequence is no longer sufficient to cover the fundamental concepts of programming,
particularly when those same courses seek to offer a broader vision of the field.
Expanding the introductory sequence to three courses makes it far easier to cover the
growing body of knowledge in a way that gives students adequate time to assimilate the
material.

The CC2001 Task Force strongly endorses the concept of moving to a three-course
introductory sequence and believes that this option will prove optimal for a relatively
wide range of institutions. At the same time, the three-course approach will not be right
for everyone. The fact that the traditional two-course approach fits into a single year of
study at semester-based institutions often makes it easier to fit the introductory material
into the whole of the curriculum without interfering with the scheduling of sophomore-
level courses. Similarly, the task of assigning credit for courses taken at other
institutions, including advanced placement programs in secondary schools, becomes more
complicated if one institution follows a two-semester calendar while the other covers the
introductory material in three.

To support both two- and three-course introductions, the CC2001 Task Force has
developed both options for three of the introductory tracks—imperative-first, objects-
first, and breadth-first—for which the three-course model seems to have the greatest
advantages. Similar extensions could be developed for the other three approaches, but
are not included in this report. For each of the tracks, the two- and three-course variants
are distinguished using the course numbering system. The three-course sequences for
each track use the numbers 101, 102, and 103; the two-course sequences use 111 and
112.

7.4 Integrating discrete mathematics into the introductory curriculum
As we discuss in Chapter 9, the CC2001 Task Force believes it is important for computer
science students to study discrete mathematics early in their academic program,
preferably in the first year. There are at least two workable strategies for accomplishing
this goal:

1. Require computer science students to take courses in discrete mathematics
concurrently with the introductory sequence. The course descriptions in Appendix B
include two implementations of a discrete mathematics course: a one-term course
(CS115) that covers the bulk of the material in the Discrete Structures (DS) area of
the body of knowledge in an intensive way, and a two-term sequence (CS105 and
CS106) that covers the required material, together with some useful elective topics, at
a slower pace that encourages greater thoroughness of coverage.

2. Integrate at least part of the material on discrete mathematics directly into the
introductory computer science sequence so that students can more easily appreciate
how these mathematical tools apply in practical contexts. While it is certainly
advantageous to adopt this approach for certain topics, it is important to ensure that
students have sufficient exposure to discrete mathematics to provide the necessary
mastery of the material. Given the size of the Discrete Structures (DS) area in the
body of knowledge, it is impossible to incorporate all the required topics into the
introductory sequence without adding an additional course to the introductory
sequence. Typical implementations will therefore incorporate some material into the
computer science sequence but retain a one-term course in discrete structures to

CC2001 Computer Science volume – 26 –
Final Report (December 15, 2001)

complete the coverage. The three-course implementation of the breadth-first
approach (CS101B/102B/103B) adopts this model of integrating the mathematical
material directly into the introductory courses.

7.5 Expectations of the introductory curriculum
Despite the ongoing debates over pedagogical approaches, there are many values that
virtually all advocates of computer science education share. In this section, we outline
what we believe constitutes a general consensus about a minimal set of goals for an
introductory curriculum. Each individual strategy articulated in section 7.6 seeks to
accomplish much more than what we describe here, but each will cover a common set of
topics that can serve as a base for intermediate course structures.

In today’s world, computers are ubiquitous. Because of the importance of computer
systems and the wide applicability of computer-based skills, introductory computer
science experience should certainly expose students to the design, construction, and
application of computer systems and offer them training in skills that have demonstrated
utility. At the same time, introductory computer science courses must also introduce
students to some of the central intellectual aspects of the discipline. When we view
computer science as a discipline, it is important to look beyond its popular conception as
a tool to consider its conceptual foundations. Upon what principles does it stand? What
new concepts does it bring to the realm of knowledge? What kinds of questions do
computer scientists ask? What modes of thought and mental disciplines do they bring to
bear on problems?

We believe it is possible to develop an introductory computer science experience that
accomplishes each of the following goals:

• Introduces students to a set of fundamental computer science concepts
• Facilitates the development of cognitive models for these concepts
• Encourages students to develop the skills necessary to apply the conceptual knowledge
• Facilitates transfer by students from two-year colleges into four-year programs by

establishing clearly defined outcomes and content equivalencies

To this end, Figure 7-1 presents a set of concepts, knowledge, and skills that we believe
should be a part of each introductory curriculum. While the order of presentation and
level of emphasis will vary among individual computer science programs, we expect that
all introductory programs will seek to meet these goals. Figure 7-2 expresses similar
guidelines in terms of units and topics from the body of knowledge introduced in
Chapter 5.

CC2001 Computer Science volume – 27 –
Final Report (December 15, 2001)

Figure 7-1. Concepts covered in the introductory curriculum

Algorithmic thinking

Concept Description Associated activities
Algorithmic
computation

Algorithms as models of computational
processes; examples of important
algorithms

Read and explain algorithms; reason
about algorithmic correctness; use,
apply, and adapt standard algorithms;
write algorithms

Algorithmic
efficiency and
resource usage

Simple analysis of algorithmic
complexity; evaluation of tradeoff
considerations; techniques for
estimation and measurement

Estimate time and space usage; conduct
laboratory experiments to evaluate
algorithmic efficiency

Programming fundamentals

Concept Description Associated activities
Data models Standard structures for representing

data; abstract (described by a model)
and concrete (described by an
implementation) descriptions

Read and explain values of program
objects; create, implement, use, and
modify programs that manipulate
standard data structures

Control structures Effects of applying operations to
program objects; what an operation
does (described by a model); how an
operation does it (described by an
implementation)

Read and explain the effects of
operations; implement and describe
operations; construct programs to
implement a range of standard
algorithms

Order of
execution

Standard control structures: sequence,
selection, iteration; function calls and
parameter passing

Make appropriate use of control
structures in the design of algorithms
and then implement those structures in
executable programs

Encapsulation Indivisible bundling of related entities;
client view based on abstraction and
information-hiding; implementer view
based on internal detail

Use existing encapsulated components
in programs; design, implement, and
document encapsulated components

Relationships
among
encapsulated
components

The role of interfaces in mediating
information exchange; responsibilities
of encapsulated components to their
clients; the value of inheritance

Explain and make use of inheritance and
interface relationships; incorporate
inheritance and interfaces into the
design and implementation of programs

Testing and
debugging

The importance of testing; debugging
strategies

Design effective tests; identify and
correct coding and logic errors

Computing environments

Concept Description Associated activities
Layers of
abstraction

Computer systems as a hierarchy of
virtual machines

Describe the roles of the various layers
in the virtual machine hierarchy

Programming
languages and
paradigms

Role of programming languages; the
translation process; the existence of
multiple programming paradigms

Outline the program translation process;
identify at least two programming
paradigms and describe their differences

Basic hardware
and data
representation

Rudiments of machine organization;
machine-level representation of data

Explain basic machine structure; show
how different kinds of information can
be represented using bits

Tools Compilers, editors, debuggers, and
other components of programming
environments

Use tools successfully to develop
software

Applications Web browsers, word processors,
spreadsheets, data bases, e-mail
systems

Make effective use of standard
computing applications

CC2001 Computer Science volume – 28 –
Final Report (December 15, 2001)

Figure 7-2. Units covered by all six of the introductory tracks

Units for which all topics must be covered:
DS1. Functions, relations, and sets
DS2. Basic logic
DS4. Basics of counting
DS6. Discrete probability
PF1. Fundamental programming constructs
PF4. Recursion
PL1. Overview of programming languages
PL2. Virtual machines
PL4. Declarations and types
PL5. Abstraction mechanisms
SP1. History of computing

Units for which only a subset of the topics must be covered:
DS3. Proof techniques: The structure of formal proofs; proof techniques: direct, counterexample,

contraposition, contradiction; mathematical induction
PF2. Algorithms and problem-solving: Problem-solving strategies; the role of algorithms in the

problem-solving process; the concept and properties of algorithms; debugging strategies
PF3. Fundamental data structures: Primitive types; arrays; records; strings and string processing;

data representation in memory; static, stack, and heap allocation; runtime storage
management; pointers and references; linked structures

AL1. Basic algorithmic analysis: Big O notation; standard complexity classes; empirical
measurements of performance; time and space tradeoffs in algorithms

AL3. Fundamental computing algorithms: Simple numerical algorithms; sequential and binary
search algorithms; quadratic and O(N log N) sorting algorithms; hashing; binary search trees

AR1. Digital logic and digital systems: Logic gates; logic expressions
PL6. Object-oriented programming: Object-oriented design; encapsulation and information-

hiding; separation of behavior and implementation; classes, subclasses, and inheritance;
polymorphism; class hierarchies

SE1. Software design: Fundamental design concepts and principles; object-oriented analysis and
design; design for reuse

SE2. Using APIs: API programming; class browsers and related tools; programming by example;
debugging in the API environment

SE3. Software tools and environments: Programming environments; testing tools
SE5. Software requirements and specifications: Importance of specification in the software

process
SE6. Software validation: Testing fundamentals; test case generation

7.6 Implementation strategies for introductory computer science
This section describes six implementations of the introductory curriculum that the
CC2001 Task Force feels have achieved a level of success that allows them to serve as
models of best practices. Determining whether an approach has been successful,
however, is more difficult than it might appear. Albert Shanker, the former president of
the American Federation of Teachers, wrote that “educational experiments are doomed to
succeed,” in part because the energy their creators bring to the experiment creates an
excitement that encourages success. Given enough enthusiasm, almost any pedagogical
approach will succeed as long as its proponents remain committed to that vision. The
real test is whether the initial success can be sustained when the approach is adopted by
others.

In choosing our set of models for the first year, we have insisted that each strategy be
endorsed by people other than the creator who have used the approach successfully. By
doing so, we hope to limit our attention to those strategies that already have a track record

CC2001 Computer Science volume – 29 –
Final Report (December 15, 2001)

of successful adoption. The six models identified in the sections that follow have each
met the criterion of having a successful track record when taught by faculty other than the
original designer. At the same time, it is important to note that only the underlying
approaches have been subjected to this level of validation and not the specific course
designs included in Appendix B. In particular, we did not find existing models for the
three-semester implementations we have proposed under the imperative-first, objects-
first, and breadth-first approaches. The approaches themselves have proven successful in
the more traditional two-semester packaging, and we believe that there is good reason to
believe that the three-semester implementations will achieve similar levels of success.

7.6.1 Imperative-first
The imperative-first approach is the most traditional of the models we have included in
this report. As noted in section 7.3, we have proposed two implementations of the
imperative-first model, one that covers the material in three semesters and one that
completes the presentation in two, as follows:

CS101I. Programming Fundamentals
CS102I. The Object-Oriented Paradigm
CS103I. Data Structures and Algorithms

CS111I. Introduction to Programming
CS112I. Data Abstraction

The two-semester model is the traditional implementation. CS111I offers an introduction
to programming in an imperative style, using a structure similar to that in CS1 as defined
in Curriculum ’78 [ACM78, Koffman84]. CS112I then extends this base by presenting
much of the material from the traditional CS2 course [Koffman85], but with an explicit
focus on programming in the object-oriented paradigm. The three-semester
implementation (CS101I/102I/103I) expands the coverage of most topics to ensure that
students are able to master these fundamental concepts before moving on. These courses
also offer space for additional topics that will give students a wider conception of the
discipline.

It is important to note that first course in either sequence—CS101I or CS111I—may well
use an object-oriented language for its programming examples and exercises. What
distinguishes this approach from the objects-first model is the emphasis and ordering of
the early topics. Even if it is taught using an object-oriented language, the first course
focuses on the imperative aspects of that language: expressions, control structures,
procedures and functions, and other central elements of the traditional procedural model.
The techniques of object-oriented design are deferred to the follow-on course.

The imperative-first strategy is subject to the disadvantages—as well as the advantages—
of any programming-first implementation, as outlined in section 7.2. In addition,
adopting the imperative-first strategy means that students will get less exposure to the
techniques of object-oriented programming than they would if the curriculum followed
the objects-first model. Given the centrality of object-oriented programming in the
curriculum requirements and the difficulty students have learning to program in an
object-oriented style, the fact that the introduction of this material is delayed to the
second course is clearly a weakness in this approach. At the same time, students do need
exposure to the traditional imperative style of programming, which remains in
widespread use and which is an integral part of any object-oriented languages. Opinion
in the community is divided as to which model should be presented first. Some argue
that students who have learned the imperative model first have more trouble adopting an
object-oriented approach. Others counter that students who have grown used to working

CC2001 Computer Science volume – 30 –
Final Report (December 15, 2001)

in an object-oriented language will chafe at the idea of learning to work without those
features that makes object-oriented programming so powerful.

In any event, institutions adopting the imperative-first model will need to include
additional coverage of object-oriented design principles at the intermediate level.

7.6.2 Objects-first
The objects-first model also focuses on programming, but emphasizes the principles of
object-oriented programming and design from the very beginning. As with the
imperative model, we propose both a two- and three-semester implementation in this
report, as follows:

CS101O. Introduction to Object-Oriented Programming
CS102O. Objects and Data Abstraction
CS103O. Algorithms and Data Structures

CS111O. Object-Oriented Programming
CS112O. Object-Oriented Design and Methodology

The first course in either sequence begins immediately with the notions of objects and
inheritance, giving students early exposure to these ideas. After experimenting with these
ideas in the context of simple interactive programs, the course then goes on to introduce
more traditional control structures, but always in the context of an overarching focus on
object-oriented design. The follow-on courses then go on to cover algorithms,
fundamental data structures, and software engineering issues in more detail.

The principal advantage in the objects-first strategy is the early exposure to object-
oriented programming, which has become increasingly important in both academia and
industry. The December 2000 announcement by the College Board that they plan to
introduce a more object-oriented approach in the Advanced Placement curriculum
underscores the importance of this approach [AP2000]. At the same time, the objects-
first model does not specifically address many of the disadvantages common to
programming-first approaches, as described in section 7.2. In fact, the problems of the
programming-first approach can be exacerbated in the objects-first model because many
of the languages used for object-oriented programming in industry—particularly C++, but
to a certain extent Java as well—are significantly more complex than classical languages.
Unless instructors take special care to introduce the material in a way that limits this
complexity, such details can easily overwhelm introductory students.

7.6.3 Functional-first
The functional-first style was pioneered at MIT in the 1980s [Abelson85] and is
characterized by using a simple functional language, such as Scheme, in the first course.
Compared to the other programming-first implementations, this approach has the
following advantages:

• Using a language outside the professional mainstream reduces the effect of diversity in
background, since relatively few students coming into college will already have
experience programming in this paradigm.

• The minimalist syntax of functional languages means that courses can focus on more
fundamental issues.

• Several important ideas—most notably recursion, linked data structures, and functions
as first-class data objects—occur naturally in this domain and can be covered much
earlier in the curriculum.

CC2001 Computer Science volume – 31 –
Final Report (December 15, 2001)

There are, however, some dangers in this approach. The first is that students may react
skeptically to learning a language that they see as outside of the mainstream. For
students who are already committed to computer science, it is possible to overcome this
objection by exploiting the expressive power of these languages and showing how much
students can accomplish using these tools. For students who are taking an introductory
computer science course to test the waters before jumping in, and particularly for students
who see the course as a way to learn some practical programming skills, functional
languages are a much harder sell. The second danger is that this approach typically
requires students to think much more abstractly at an early stage than is true with more
traditional programming languages. While forcing students to think in this way is
certainly valuable and needs to be part of the curriculum at some point, placing it so early
can discourage some students with less experience in that style of thought.

To cover the material that is essential in the first year, an introductory course that follows
the functional-first strategy must be followed by an intensive course that covers object-
oriented programming and design. The sample courses that implement this strategy are

CS111F. Introduction to Functional Programming
CS112F. Objects and Algorithms

7.6.4 Breadth-first
For many years, there has been concern in the computer science education community
that the traditional “programming-oriented” introduction to computer science gives
students a limited view of the discipline. Computer science, after all, is an ever-
expanding field that includes many activities beyond programming. Courses that
emphasize only this one aspect fail to let students experience the many other areas and
styles of thought that are part of computer science as a whole.

To provide that more holistic view of the discipline, many computer science educators
have argued for a “breadth-first” approach in which the first course considers a much
broader range of topics. This approach was recommended strongly in both Computing
Curricula 1991 and the earlier “Computing as a Discipline” report, which envisioned a
curriculum in which “the first courses in computer science would not only introduce
programming, algorithms, and data structures, but introduce material from all the other
subdisciplines as well,” making sure that “mathematics and other theory would be well
integrated into the lectures at appropriate points” [Denning89].

Developing a successful breadth-first implementation, however, has proven to be
difficult. In our surveys, the most common implementation of the breadth-first idea was
to create an introductory “breadth-first” course that introduces the field to majors and
nonmajors alike. Such a course gives students exposure to a range of interesting and
important topics rather than plunging them immediately into the details of one specific
area. Students who are interested in learning more about the field can then begin a
“regular” one-year introductory sequence. Thus, most existing models involve the
addition of a single breadth-first introductory course as the entry point into the discipline
for all students. Students who complete such a course can then move on to any of the
other introductory sequences with a much stronger perspective on the field.

The advantage of offering the breadth-first model as a lead-in to a more conventional
programming sequence is that doing so gives students an immediate appreciation for the
breadth of computer science, allowing them to more easily decide whether this is a field
they do or do not wish to study in depth. The primary disadvantage of this approach,
however, is that it adds one course to the size of the major and delays by a term the
completion of the introductory sequence.

CC2001 Computer Science volume – 32 –
Final Report (December 15, 2001)

In our discussions, the CC2001 Task Force saw no reason why it would not be possible to
create a successful breadth-first sequence, particularly if one abandons the view that the
introductory sequence must be two semesters long. The basic idea is to take the material
in the first-year courses—the introductory programming sequence and the discrete
mathematics courses—and reassemble them in a way that provides early exposure to the
breadth of the field. Unfortunately, we have not been able to identify any such models
that meet our acceptance criterion of successful implementation by faculty other than the
originator. We therefore have presented two separate implementations of a breadth-first
approach:

• A one-semester course (CS110B) that serves as a prerequisite to a more traditional
programming sequence

• A preliminary implementation of a breadth-first introductory sequence
(CS111B/112B/113B) that seeks to accomplish in three semesters what has proven to be
so difficult in two

Another approach to providing breadth in the curriculum is to offer a survey of the field
after the completion of the introductory programming sequence. This “breadth-second”
approach means that students begin with a programming-based introduction to make sure
they have the necessary implementation skills but then have an early chance to appreciate
the range of topics that are all part of computer science. While we feel that such an
approach is worth pursuing as an experiment, we have not yet found models that meet our
criterion for acceptance.

7.6.5 Algorithms-first
In this approach, the basic concepts of computer science are introduced using pseudocode
instead of an executable language. By introducing students to basic algorithmic concepts
and constructs apart from any particular executable language, this approach minimizes
the preoccupation with syntactic detail that demands for successful program execution
typically engender among students. Instead, it requires that students reason about and
explain the algorithms they construct, tracing them by hand and mind. It permits students
to work with a range of data and control structures without having to contend with the
various peculiarities that popular programming languages inevitably introduce.
Moreover, because students are freed from the need to execute their programs, this
approach permits students to experience the range of such constructs more rapidly. Once
students have a solid grasp of the algorithmic foundations and the range of data and
control structures used in the pseudocode, they can then move on to a more conventional
language, either partway through the first course or, at the latest, the beginning of the
second course. Because students have experienced a wider range of both data and control
structures early, their later progress through conventional programming work can occur
more rapidly and class time can be more explicitly focused on issues of effective
programming practices and systematic debugging skills.

By eliminating some of the time spent on syntax and the details of a particular
programming environment, an introductory course that follows the algorithms-first
approach can include additional theoretical topics, such as estimations of efficiency and
the rudiments of computability. Doing so appears to be useful in two respects:

1. For non-majors, it permits some access to the “science” of computer science.
2. For computer science majors, it permits them to encounter appropriate aspects of

theory from the very beginning of their course of study, minimizing the risk that they
will later experience coursework in theory as an irrelevant curricular appendage.

CC2001 Computer Science volume – 33 –
Final Report (December 15, 2001)

At the same time, the algorithms-first approach has several critical weaknesses. For one
thing, students at the introductory level want to experience the power and satisfaction that
comes from making computers actually do something. Courses focused only on
constructing algorithms in pseudocode frustrate this motivation and desire. It is therefore
useful to combine the algorithms-first approach with laboratory-based exposure to
modern application software that provides students with applied computing experience.
This strategy helps students develop a practical skill set that may be of greater relevance
to nonmajors than conventional programming. By synchronizing the laboratory-and-
project agenda in software applications with the lecture-and-homework coverage of
algorithms, students experience the relevance of, for example, data structures in the
context of database work, control structures in the context of spreadsheet development,
and high-level design in the context of web page creation.

Relying on pseudocode, however, also has the effect of freeing students from the need to
demonstrate that their algorithms work in the context of a functioning implementation.
While the process of getting a program to compile and execute correctly is sometimes
frustrating, it is also a critical skill that students must master early in their education. The
process of debugging in the pseudocode environment is quite different from the process
of debugging an executable program. The former is characterized by desk-checking and
reasoning about the algorithm; the latter is usually more of function of interpreting
symptoms and learning to do the detective work associated with finding programming
errors. Both skills are important, and it is difficult to assess how the algorithms-first
approach affects the students’ facility with the debugging process.

The final concern about the algorithms-first approach is that it requires substantial
grading effort. While it is certainly inappropriate to assess introductory programming
assignments solely on successful execution in a set of test cases, being able to make such
tests helps graders identify algorithmic errors much more easily. Evaluating pseudocode
for correctness is a much harder challenge that typically requires extensive use of course
assistants.

In this report, the algorithms-first approach is illustrated by the following courses:

CS111A. Introduction to Algorithms and Applications
CS112A. Programming Methodology

The first course focuses on algorithms and applications early, and then goes on to offer an
introduction to object-oriented programming towards the end. The second course
provides intensive coverage of object-oriented programming to ensure that students are
up to speed on these techniques.

7.6.6 Hardware-first
The hardware-first approach teaches the basics of computer science beginning at the
machine level and building up toward more abstract concepts. The basic philosophy
behind this strategy is for students to learn about computing in a step-by-step fashion that
requires as little mystification as possible. The syllabus begins with switching circuits,
uses those to make simple registers and arithmetic units, and then embeds those in a
simple von Neumann machine. Only after establishing the hardware foundation, does the
course go on to consider programming in a higher-level language.

The courses that comprise this model are

CS111H. Introduction to the Computer
CS112H. Object-Oriented Programming Techniques

CC2001 Computer Science volume – 34 –
Final Report (December 15, 2001)

The first course in the sequence covers the computer from the bottom up; the second uses
that foundation to build up the programming skills of the students and to give them a
solid introduction to object-oriented techniques.

Such an approach works well for students who prefer to understand the process of
computation in all of its reductionist detail. It is less effective at encouraging students to
see the holistic concepts beyond the mechanics of implementation. The hardware-first
approach is also somewhat at odds with the growing centrality of software and the
tendency of increasingly sophisticated virtual machines to separate the programming
process from the underlying hardware. At the same time, we believe that such a course
might be particularly viable in a computing engineering program, where early exposure to
hardware issues is essential.

CC2001 Computer Science volume – 35 –
Final Report (December 15, 2001)

Chapter 8
Intermediate Courses

The intermediate courses in the curriculum are designed to provide a solid foundation that
serves as a base for more advanced study of particular topics. At the same time, it is
important to keep in mind that the introductory courses of Chapter 7 and the intermediate
courses described here together do not constitute a complete curriculum. All
undergraduate programs will include a significant amount of additional elective material
of the type described in Chapter 9. In this chapter, we propose four implementations for
the intermediate level of the curriculum, as follows:

• A traditional approach in which each course addresses a single topic
• A compressed approach that organises courses around broader themes
• An intensive systems-based approach
• A web-based approach that uses networking as its organizing principle

These implementations are presented as representative models rather than as prescriptive
standards. In each case, there are many other workable options that apply similar
philosophies to develop a somewhat different set of courses. Moreover, it is often
possible to create hybrid approaches by combining elements from different models, as
discussed in section 8.3. The most important consideration is simply whether a particular
implementation ensures that all students encounter the units in the required core at some
point in the curriculum.

8.1 Issues in the design of the intermediate courses
As with the introductory courses, individual faculty and institutions have crafted many
different approaches to the intermediate level courses. This level of variety and the
pedagogical experimentation that makes it possible are healthy signs attesting to the
vitality of education in our discipline. The members of the CC2001 Task Force,
however, are concerned that most of the existing models focus on relatively
compartmentalized topics, with only a few seeking to build a curriculum around more
abstract themes that cut across the discipline. In a 1992 article entitled “We can teach
software better” [Shaw92], Mary Shaw expressed this point as follows:

Let’s organize our courses around ideas rather than around artifacts. This helps
make the objectives of the course clear to both students and faculty.
Engineering schools don’t teach boiler design—they teach thermodynamics.
Yet two of the mainstay software courses—“compiler construction” and
“operating systems”—are system-artifact dinosaurs.

We believe that this advice remains both applicable and insightful. In existing computer
science curricula, many of the courses continue to be focused around artifacts. We
believe it is important for both curriculum designers and individual instructors to break
away from this legacy and experiment with alternative models.

Several past reports have sought to focus on broad themes that unify the practice of
computer science. Computing Curricula 1991, for example, identified three broad
processes and twelve recurring concepts that permeate the study of computer science, as
shown in Figure 8-1. Similarly, the ACM model curriculum for a liberal arts degree in
computer science [Gibbs86, Walker96] organized its intermediate-level courses on four
central themes of computer science—hardware, software, algorithms, and theory—
leading to a course in each area.

CC2001 Computer Science volume – 36 –
Final Report (December 15, 2001)

Figure 8-1. Processes and themes from Computing Curricula 1991

The Three Processes

Theory:
• Definitions and axioms
• Theorems
• Proofs
• Definitions and axioms

Abstraction:
• Data collection and hypothesis formation
• Modeling and prediction
• Design of an experiment
• Analysis of results

Design:
• Requirements
• Specifications
• Design and implementation
• Testing and analysis

The Twelve Recurring Themes

Binding

Complexity of large problems

Conceptual and formal models

Consistency and completeness

Efficiency

Evolution

Levels of abstraction

Ordering in space

Ordering in time

Reuse

Security

Tradeoffs and consequences

At the very least, we believe it is important to recognize that even the artifact-based
approaches need to remain sensitive to the technologies of the time. As Mary Shaw
observed, the traditional curriculum includes courses about operating systems and
compilers, which are no longer as central to the discipline as they once were. In today’s
world, networks and component-based systems are far more important to the practice of
the field. In a rapidly changing field like computer science, focusing too narrowly on
specific applications, vendors, or implementations leaves students vulnerable to the
problem of obsolescence.

8.2 Sample approaches for the intermediate level
The subsections that follow describe the four intermediate tracks—topic-based,
compressed, systems-based, and web-based—that are articulated in this report, along with
an additional section describing hybrid approaches. To make it easier to see which 200-
level courses go together, the descriptions in these sections use the subscripts T, C, S, and
W to identify a course with its model. For example, the discussion of the topic-based
approach uses the designation CS220T to refer to the intermediate course in architecture.
The description of the compressed approach refers to CS220C. In fact, these two courses
are the same. At the 200-level, the course number uniquely identifies the material, and
the subscripts are used only to identify which track or tracks include that course. In the
actual course description in Appendix B, the header line identifies all the tracks that use
the approach. In this case, the header line is

CS220{C,S,T}. Computer Architecture

which shows that the compressed, systems-based, and topic-based approaches all include
this course.

8.2.1 A traditional topic-based approach
The most common approach to the intermediate courses is simply to apportion the
material into units based on the traditional divisions of the field. Thus, in this approach,
students take separate courses in each of the core areas: a course in architecture, a course
in operating systems, a course in algorithms, and so on. It is not necessary, however, to
require separate courses in every area covered by the body of knowlege. Some areas with
relatively few core units, such as graphics, can be integrated into the introductory

CC2001 Computer Science volume – 37 –
Final Report (December 15, 2001)

curriculum; others, such as human-computer interaction, can be incorporated into
advanced courses that explore the nature of professional practice in the discipline.

As a sample implementation of this model, we propose the following set of courses:

CS210T. Algorithm Design and Analysis
CS220T. Computer Architecture
CS225T. Operating Systems
CS230T. Net-centric Computing
CS260T. Artificial Intelligence
CS270T. Databases
CS280T. Social and Professional Issues
CS290T. Software Development
CS490. Capstone Project

This model is close to what many departments and programs currently do, so it has the
advantage of being well tested. The classes will generally be familiar to most faculty,
and instructional resources—such as syllabi, texts, and problem sets—are readily
available.

At the same time, this model is highly susceptible to the problem of “artifact-based
courses” described in section 8.1. In addition, some institutions may have problems with
the size of this model. Students must complete nine intermediate courses, along with one
of the introductory sequences described in Chapter 7. For large schools, offering nine
intermediate courses may not be a problem. However, for schools with limited space in
their major, nine intermediate courses may be beyond what their program can support.
The compressed approach described in the following section offers one approach to
reducing the size of the curriculum, as do the hybrid approaches in section 8.3.

8.2.2 A compressed approach
For the most part, the topic-based approach devotes a full course to each of the major
areas in the body of knowledge. Most of these areas, however, do not include 40 hours of
core material, which means that the intermediate courses in the topic-based approach
cover additional topics beyond what is required for the core. For institutions that need to
reduce the number of intermediate courses, the most straightforward approach is to
combine individual topics into thematic courses that integrate material from related areas
of computer science. In addition to making the core smaller, this strategy also begins to
address the problem of classes that focus too narrowly on “software artifacts.”

As an example, it is certainly possible to combine the material on artificial intelligence
from CS260T with the material on databases from CS270T to create an integrated course
that looks at these ideas together. Similarly, it is possible to merge the core topics in
software engineering with those in the social and professional area. Our compressed
model represents a particularly aggressive approach to combining topics that reduces the
nine courses proposed in the traditional model to the following set of five courses:

CS210C. Algorithm Design and Analysis
CS220C. Computer Architecture
CS226C. Operating Systems and Networking
CS262C. Information and Knowledge Management
CS292C. Software Development and Professional Practice

This implementation covers the required core units but saves four courses over the topic-
based approach. As a result, this approach may prove useful in environments where it is
important to keep the number of intermediate courses to a minimum. Such pressures may

CC2001 Computer Science volume – 38 –
Final Report (December 15, 2001)

exist in small colleges with few faculty members or in any institution that has been
unable to recruit sufficient faculty to teach a larger curriculum.

It is not necessary, of course, to go quite so far in terms of reducing the number of
intermediate courses as the compressed model does. Section 8.3 outlines a number of
hybrid approaches that adopt some of the strategies from the compressed model to create
intermediate course sequences that are intermediate in size between the five-course
compressed model and the nine-course traditional model. At the same time, it is
important to avoid being too aggressive in seeking to reduce the number of courses. We
strongly recommend against trying to pack the required units into the theoretical
minimum of seven courses implied by the fact that the core contains 280 hours of
material. Overpacking the curriculum creates courses that lack coherent themes and
leaves too little time for individual instructors to adapt and enhance the material.

8.2.3 A systems-based approach
Ultimately, the theories and practices of computer science find expression in the
development of high-quality computer systems. This section defines a computer science
curriculum that uses systems development as a unifying theme. It includes more
technical and professional material than the other models, while retaining a reasonable
level of coverage of the theoretical topics. Computer science theory remains essential,
both as a foundation for understanding practice and to provide students with a lasting
base of knowledge that remains valid despite changes in technology.

A minimal implementation of the systems-based approach consists of the following
courses beyond the introductory sequence:

CS120. Introduction to Computer Organization
CS210S. Algorithm Design and Analysis
CS220S. Computer Architecture
CS226S. Operating Systems and Networking
CS240S. Programming Language Translation
CS255S. Computer Graphics
CS260S. Artificial Intelligence
CS271S. Information Management
CS291S. Software Development and Systems Programming
CS490. Capstone Project

Although their titles suggest that these courses focus on single areas, it is important to use
the encompassing notion of a system as a unifying theme. This system perspective must
permeate all aspects of the curriculum and include a combination of theory, practice,
application, and attitudes.

8.2.4 A web-based approach
This model has grown out of a grass-roots demand for curricular structures that focus
more attention on the Internet and the World-Wide Web, using these domains to serve as
a common foundation for the curriculum as a whole. The following courses represent
one attempt to develop such a model:

CS130. Introduction to the World-Wide Web
CS210W. Algorithm Design and Analysis
CS221W. Architecture and Operating Systems
CS222W. Architectures for Networking and Communication
CS230W. Net-centric Computing
CS250W. Human-Computer Interaction

CC2001 Computer Science volume – 39 –
Final Report (December 15, 2001)

CS255W. Computer Graphics
CS261W. AI and Information
CS292W. Software Development and Professional Practice

8.3 Hybrid approaches
As noted in the introduction to this chapter, the four intermediate approaches outlined in
this report—the traditional approach, the compressed approach, the systems-based
approach, and the web-based approach—should be viewed as representative models that
represent only a few of the possibilities available. In many cases, it is possible to
combine elements of two or more approaches to create a new hybrid curriculum that may
meet more effectively the needs of a particular institution. In creating such a hybrid,
however, it is important to ensure that the resulting curriculum in fact covers the required
core topics.

Figure 8-2 outlines three hybrid approaches that meet the condition of covering the full
set of core topics when used in conjunction with any of the introductory sequences
described in Chapter 7. Other combinations are possible as well.

All of the approaches described in this chapter—the four specific models and the various
hybrids—all have a common goal: to present the fundamental ideas and enduring
concepts of computer science that every student must learn to work successfully in the
field. In doing so, these intermediate courses lay the foundation for more advanced work
in computer science.

Figure 8-2. Hybrid approaches

An eight-course hybrid that adds one cross-cutting course to a traditional model:
CS210T. Algorithm Design and Analysis
CS220T. Computer Architecture
CS226C. Operating Systems and Networking
CS260T. Artificial Intelligence
CS270T. Databases
CS280T. Social and Professional Issues
CS290C. Software Development
CS490. Capstone Project

A seven-course hybrid that mixes the web-based and the compressed approach:
CS130. Introduction to the World-Wide Web
CS210W. Algorithm Design and Analysis
CS221W. Architecture and Operating Systems
CS222W. Operating Systems
CS230W. Net-centric Computing
CS262C. Information and Knowledge Management
CS292C. Software Development and Professional Practice

A six-course hybrid that mixes the traditional and the compressed approach:
CS210T. Algorithm Design and Analysis
CS220T. Computer Architecture
CS225T. Operating Systems
CS230T. Net-centric Computing
CS262C. Information and Knowledge Management
CS292C. Software Development and Professional Practice

CC2001 Computer Science volume – 40 –
Final Report (December 15, 2001)

Chapter 9
Completing the Curriculum

The primary purpose of Chapters 7 and 8 is to outline a variety of approaches for
covering the core units in the body of knowledge. As we have emphasized on several
occasions in this report, the computer science core does not in itself constitute a complete
curriculum. To complete the curriculum, computer science programs must also ensure
that students have the background knowledge and skills they need to succeed as well as
the chance to do advanced work that goes beyond the boundaries of the core. This
chapter offers strategies and guidelines in each of these areas. Section 9.1 describes a set
of general requirements that support the broad education of computer science students.
Section 9.2 outlines a set of advanced courses to provide depth in the curriculum, which
is followed by a discussion of project courses in section 9.3. Finally, section 9.4 provides
an overview of a few curricular models that address these goals for a variety of
institutions.

9.1 General requirements
A successful computer science graduate needs many skills beyond the technical ones
found in the CS body of knowledge. For example, computer science students must have
a certain level of mathematical sophistication, familiarity with the methods of science, a
sense of how computing is applied in practice, effective communication skills, and the
ability to work productively in teams. This chapter outlines several general
recommendations for computer science programs seeking to meet these goals.

9.1.1 Mathematical rigor
Mathematics techniques and formal mathematical reasoning are integral to most areas of
computer science. The Computing Curricula 1991 report identified theory as one of the
three primary foundations of computer science, and we believe strongly that the same
principle holds true today. Computer science depends on mathematics for many of its
fundamental definitions, axioms, theorems, and proof techniques. In addition,
mathematics provides a language for working with ideas relevant to computer science,
specific tools for analysis and verification, and a theoretical framework for understanding
important computing ideas. For example, functional programming and problem solving
draw directly upon the mathematical concepts and notations for functions; algorithmic
analysis depends heavily on the mathematical topics of counting, permutations and
combinations, and probability; discussions of concurrency and deadlock draw heavily
from graph theory; and both program verification and computability build upon formal
logic and deduction. Thus, it is critical for computer science programs to include enough
mathematics so that students understand the theoretical underpinnings of the discipline.

Given the pervasive role of mathematics within computer science, the CS curriculum
must include mathematical concepts early and often. Basic mathematical concepts
should be introduced early within a student’s course work, and later courses should use
these concepts regularly. While different colleges and universities will need to adjust
their prerequisite structure to reflect local needs and opportunities, it is important for
upper-level computer science courses to make use of the mathematical content developed
in earlier courses. This dependency, moreover, should be reflected in the formal
prerequisite structure.

In developing these recommendations, the CC2001 Task Force has concluded that
computer science programs must take responsibility for ensuring that students get the

CC2001 Computer Science volume – 41 –
Final Report (December 15, 2001)

mathematics they need, especially in terms of discrete mathematics. To this end, the
CC2001 report defines a new knowledge area consisting of the discrete mathematics
required for an undergraduate program. That area—Discrete Structures (DS)—specifies
the units and topics that we believe are essential to every undergraduate program. The
material on discrete structures can be presented in separate courses or integrated more
directly into the curriculum by presenting the mathematical material together with the
computer science topics that depend on it. In either case, it is essential to make sure that
the curriculum emphasizes the use of discrete mathematical techniques throughout the
undergraduate program.

The CC2001 Task Force makes the following recommendations with respect to the
mathematical content of the computer science curriculum:

• Discrete mathematics. All students need exposure to the tools of discrete mathematics.
When possible, it is best for students to take more than one course in this area, but all
programs should include enough exposure to this area to cover the core topics in the
DS area. Strategies for integrating discrete mathematics into the introductory
curriculum are discussed in section 7.4.

• Additional mathematics. Students should take additional mathematics to develop their
sophistication in this area. That mathematics might consist of courses in any number
of areas including statistics, calculus, linear algebra, numerical methods, number
theory, geometry, or symbolic logic. The choice should depend on program
objectives, institutional requirements, and the needs of the individual student.

9.1.2 The scientific method
As noted in Computing Curricula 1991, the process of abstraction (data collection,
hypothesis formation and testing, experimentation, analysis) represents a vital component
of logical thought within the field of computer science. The scientific method represents
a basis methodology for much of the discipline of computer science, and students should
have a solid exposure to this methodology.

To develop a firm understanding of the scientific method, students must have direct
hands-on experience with hypothesis formulation, experimental design, hypothesis
testing, and data analysis. While a curriculum may provide this experience in various
ways, it is vital that students must “do science”—not just “read about science.”

The CC2001 Task Force therefore makes the following recommendations about science:

• Students must develop an understanding of the scientific method and experience this
mode of inquiry in courses that provide some exposure to laboratory work.

• Students may acquire their scientific perspective in a variety of domains, depending on
program objectives and their area of interest.

9.1.3 Familiarity with applications
With the broad range of applications of computing in today’s society, computer scientists
must be able to work effectively with people from other disciplines. To this end, the
CC2001 Task Force recommends that all computer science students should:

• Engage in an in-depth study of some subject that uses computing in a substantive way.

Computing students have a wide range of interests and professional goals. For many
students, study of computing together with an application area will be extremely useful.
Such work might be accomplished in several ways. One approach is to integrate case
studies into computer science courses in a way that emphasizes the importance of

CC2001 Computer Science volume – 42 –
Final Report (December 15, 2001)

understanding the application domain. Other approaches might include an extended
internship experience or the equivalent of a full semester’s work that would count toward
a major in that discipline. Such opportunities certainly exist in such fields as psychology,
sociology, economics, biology, business, or any of the science or engineering disciplines.
With some creativity, it is also possible to find applications to areas that might be
considered farther afield, often through innovative approaches beyond the scope of a
standard computer science curriculum.

9.1.4 Communications skills
A widely-heard theme among employers is that computer scientists must be able to
communicate effectively with colleagues and clients. Because of the importance of good
communication skills in nearly all computing careers, computer science students must
sharpen their oral and writing skills in a variety of contexts—both inside and outside of
computer science courses. In particular, students in computer science programs should be
able to:

• Communicate ideas effectively in written form
• Make effective oral presentations, both formally and informally
• Understand and offer constructive critiques of the presentations of others

While institutions may adopt different strategies to accomplish these goals, the program
of each computer science student must include numerous occasions for improving writing
and practicing oral communication in a way that emphasizes both speaking and active
listening skills.

At a minimum, a computer science curriculum should require:

• Course work that emphasizes the mechanics and process of writing
• At least one formal oral presentation to a group
• The opportunity to critique at least one oral presentation

Furthermore, the computer science curriculum should integrate writing and verbal
discussion consistently in substantive ways ways. Communication skills should not be
seen as separate but should instead be fully incorporated into the computer science
curriculum and its requirements.

9.1.5 Working in teams
Few computer professionals can expect to work in isolation for very much of the time.
Software projects are usually implemented by groups of people working together as a
team. Computer science students therefore need to learn about the mechanics and
dynamics of effective team participation as part of their undergraduate education.
Moreover, because the value of working in teams (as well as the difficulties that arise)
does not become evident in small-scale projects, students need to engage in team-oriented
projects that extend over a reasonably long period of time, possibly a full semester or a
significant fraction thereof.

To ensure that students have the opportunity to acquire these skills as undergraduates, the
CC2001 Task Force recommends that all computer science programs include the
following:

• Opportunities to work in teams beginning relatively early in the curriculum.
• A significant project that involves a complex implementation task in which both the

design and implementation are undertaken by a small student team. This project is

CC2001 Computer Science volume – 43 –
Final Report (December 15, 2001)

often scheduled for the last year of undergraduate study, where it can serve as a
capstone for the undergraduate experience. Strategies for structuring this project
experience are discussed in section 9.3 later in this chapter.

The experience that students derive from a significant team project can be enhanced
further by using teams that cross disciplinary boundaries. As an example, computer
science students can be paired with students in biology to conduct a project in the
emerging area of biocomputation. Such a project will require expertise from both
disciplines, along with strategies to support effective communication across the
disciplinary boundary. The ABET 2000 report [ABET2000] specifically endorses the
concept of interdisciplinary team projects, and the CC2001 Task Force agrees that such
projects can provide a rich and valuable experience for students, both inside and outside
of computer science.

9.1.6 The complementary curriculum
Particularly in times of intense demand for computer science graduates, institutions feel
pressured to ensure that graduates have specific skills to meet the needs of employers.
On the one hand, the goal of producing graduates with the skills necessary for
employment is certainly a positive one. On the other hand, it is important to keep in mind
that students are best served not by mastering specific skills that may soon be obsolete,
but instead by gaining an enduring understanding of theory and practice that will allow
them to maintain their currency over the long term. The best way to think about this
aspect of student preparation is that both employers and the students themselves should
see computer science graduates as agents of change capable of moving into employment
with skills and expectations that prove of enduring value to those organizations.

To empower students in this way, the curriculum must encourage them to develop a set of
transferable skills that enhance their overall efficacy. To some extent, these skills include
those listed in the preceding sections. But they also include skills that are not typically
developed through coursework, such as the ability to write an effective résumé, manage
time effectively, conduct library research, maintain professional responsibility, remain up
to date, engage in life-long learning, and so on. This constellation of skills has been
identified as the complementary curriculum.

One way to ensure that students develop these skills is to weave them into the fabric of
the traditional curriculum. There is, however, always a danger that elements of the
complementary curriculum absorb so much time that they overwhelm the technical
material. There are delicate issues of balance here, and curriculum and course designers
must find the proper mix.

9.2 Advanced courses
We use the term advanced course to mean courses whose content is substantially beyond
the material of the core. The units in the body of knowledge give testimony to the rich
set of possibilities that exist for such courses, but few if any institutions will be able to
offer courses covering every unit in detail. Institutions will wish to orient such courses to
their own areas of expertise, guided by the needs of students, the expertise of faculty
members, and the needs of the wider community.

The CC2001 Task Force has benefited from the work of one of its pedagogy focus
groups, which produced a set of advanced courses using the framework provided by the
body of knowledge. A set of potential course titles for each knowledge area appears in
Figure 9-1. We have, however, decided not to include in the printed report full
descriptions of the advanced courses unless those courses are part of one of the curricular

CC2001 Computer Science volume – 44 –
Final Report (December 15, 2001)

Figure 9-1. Advanced courses by area

Discrete Structures (DS)
CS301. Combinatorics
CS302. Probability and Statistics
CS303. Coding and Information Theory

Computational Science (CN)
CS304. Computational Science
CS305. Numerical Analysis
CS306. Operations Research
CS307. Simulation and Modeling
CS308. Scientific Computing
CS309. Computational Biology

Algorithms and Complexity (AL)
CS310. Advanced Algorithmic Analysis
CS311. Automata and Language Theory
CS312. Cryptography
CS313. Geometric Algorithms
CS314. Parallel Algorithms

Architecture and Organization (AR)
CS320. Advanced Computer Architecture
CS321. Parallel Architectures
CS322. System on a Chip
CS323. VLSI Development
CS324. Device Development

Operating Systems (OS)
CS325. Advanced Operating Systems
CS326. Concurrent and Distributed Systems
CS327. Dependable Computing
CS328. Fault Tolerance
CS329. Real-Time Systems

Net-Centric Computing (NC)
CS330. Advanced Computer Networks
CS331. Distributed Systems
CS332. Wireless and Mobile Computing
CS333. Cluster Computing
CS334. Data Compression
CS335. Network Management
CS336. Network Security
CS337. Enterprise Networking
CS338. Programming for the World-Wide Web

Programming Languages (PL)
CS340. Compiler Construction
CS341. Programming Language Design
CS342. Programming Language Semantics
CS343. Programming Paradigms
CS344. Functional Programming
CS345. Logic Programming
CS346. Scripting Languages

Human-Computer Interaction (HC)
CS350. Human-Centered Design and Evaluation
CS351. Graphical User Interfaces
CS352. Multimedia Systems Development
CS353. Interactive Systems Development
CS354. Computer-Supported Cooperative Work

Graphics and Visual Computing (GV)
CS355. Advanced Computer Graphics
CS356. Computer Animation
CS357. Visualization
CS358. Virtual Reality
CS359. Genetic Algorithms

Intelligent Systems (IS)
CS360. Intelligent Systems
CS361. Automated Reasoning
CS362. Knowledge-Based Systems
CS363. Machine Learning
CS364. Planning Systems
CS365. Natural Language Processing
CS366. Agents
CS367. Robotics
CS368. Symbolic Computation
CS369. Genetic Algorithms

Information Management (IM)
CS370. Advanced Database Systems
CS371. Database Design
CS372. Transaction Processing
CS373. Distributed and Object Databases
CS374. Data Mining
CS375. Data Warehousing
CS376. Multimedia Information Systems
CS377. Digital Libraries

Social and Professional Issues (SP)
CS380. Professional Practice
CS381. Social Context of Computing
CS382. Computers and Ethics
CS383. Computing Economics
CS384. Computer Law
CS385. Intellectual Property
CS386. Privacy and Civil Liberties

Software Engineering (SE)
CS390. Advanced Software Development
CS391. Software Engineering
CS392. Software Design
CS393. Software Engineering and Formal Specification
CS394. Empirical Software Engineering
CS395. Software Process Improvement
CS396. Component-Based Computing
CS397. Programming Environments
CS398. Safety-Critical Systems

tracks described in Chapter 8. Instead, we plan to create web pages for these courses,
which will be accessible from the CC2001 web page. By doing so, we will reduce the
size of the printed document and, at the same time, allow the documentation associated
with each advanced course to remain more up to date.

CC2001 Computer Science volume – 45 –
Final Report (December 15, 2001)

9.3 Project courses
As discussed in section 9.1.5, the CC2001 Task Force believes it is essential for all
undergraduates to complete a significant team project that encompasses both design and
implementation. Depending on the structure of the institution, there are several workable
strategies for providing this type of practical experience. In some cases, it may be
possible to work with local companies to create internships in which students have the
opportunity to engage in projects in an industry setting. More often, however, computer
science departments will need to offer this type of project experience through the
curricular structure.

The course descriptions in Appendix B offer several models for including project work in
the curriculum. The first strategy is simply to include a project component as part of the
required intermediate or advanced course that covers the core material on software
engineering. This strategy is illustrated by the course

CS292{C,W}. Software Development and Professional Practice

which includes a team project along with a significant amount of additional material. As
long as students have sufficient time to undertake the design and implementation of a
significant project, this approach is workable. The projects in such courses, however,
tend to be relatively small in scale, simply because the time taken up by the software
engineering material cuts into the time available for the project.

As an alternative, the CC2001 Task Force recommends that curricula include a capstone
project that allows students to bring together all the skills and concepts that they have
previously learned during their undergraduate courses. Such a course might include a
small amount of additional material, but the major focus must be on the project.
Appendix B includes both

CS490. Capstone Project

which provides a one-semester capstone and the two-semester sequence

CS491. Capstone Project I
CS492. Capstone Project II

The two-semester version offers students much more time to complete a large project, but
may not be feasible given the time constraints of the undergraduate program in the United
States.

9.4 Sample curricula
One of the great difficulties in designing curriculum guidelines is the enormous variation
that exists between programs at different types of universities and colleges. Given the
range of expectations for degree programs—particularly internationally but also within
the United States—it is impossible to come up with a single model that fits all
institutions. Chapters 7 and 8 offer several different approaches for the introductory and
intermediate levels of the curriculum that can presumably be adapted to many different
institutions. The purpose of this section is to illustrate how the complete curriculum
could be embedded into degree programs at a range of institutional types.

Perhaps the most significant variable among academic programs is the number of
computer science courses required for an undergraduate degree. In institutions outside
the United States, university students typically focus on a single subject, with perhaps a
few additional courses in closely related fields. Under this type of educational system, a
student might take 3-4 computer science courses in the first year, 4-5 in the second, and

CC2001 Computer Science volume – 46 –
Final Report (December 15, 2001)

5-6 in each of the third and fourth years. An undergraduate at such an institution would
therefore complete 17-21 computer science courses in a four-year degree. In the United
States, this level of concentration is extremely rare. At universities, for example, students
typically take 12-15 computer science courses as undergraduates, filling out their
programs with general education requirements and electives. Students at liberal-arts
colleges take 9-12 computer science courses, rounding out their education with a strong
liberal-arts experience and often a second major or minor in another field of study. Thus,
the number of computer science courses that constitute an undergraduate degree can vary
by as much as a factor of two.

It is important to realize that a smaller curriculum does not mean a weaker curriculum.
Any curriculum that follows the guidelines proposed in this report must provide a
rigorous grounding in the fundamentals of computer science. Regardless of the
characteristics and expectations of the educational institution, every curriculum must

• Cover all 280 hours of core material in the CS body of knowledge
• Require sufficient advanced coursework to provide depth in at least one area of

computer science
• Include an appropriate level of supporting mathematics
• Offer students exposure to “real world” professional skills such as research experience,

teamwork, technical writing, and project development

The next three sections describe curricular models designed to fit the needs of the
following broad classes of institution:

1. A research-oriented university in the United States
2. A university in which undergraduate education is focused on a single discipline, as is

typically the case in countries outside North America
3. An institution, such as a liberal-arts college in the United States, with a small

computer science department

9.4.1 Curriculum model for a research university in the United States
The purpose of this model is to show the correspondence between CC2001 and what is
typically done in undergraduate programs in U.S. research universities. These programs
typically have a fairly large faculty capable of providing considerable depth and breadth
in computer science. It is often an implicit goal that all students will have sufficient
depth for both graduate study and work in industry. For many of these schools, another
goal is for their students to have a smooth path between taking the first two years of the
degree at a two-year institution, such as a community college in the United States, and the
rest of the degree at the university.

In designing a university curriculum, any combination of an introductory track described
in Chapter 7 with either the traditional, systems, or web-based intermediate curriculum
from Chapter 8 can be made to work. The most common choices of introductory
sequences in such settings are the two- and three-course versions of the imperative and
objects-first introductions, described in sections 7.6.1 and 7.6.2, respectively. It is
important to note, however, that these implementations are not simply an instantiation of
current practice. Each of these sequences puts a significant amount of modern material in
such areas as networking and databases into the required introductory and intermediate
courses. In many research universities today, that material is found only in advanced
elective courses, which may therefore be missing from some student programs.

CC2001 Computer Science volume – 47 –
Final Report (December 15, 2001)

Figure 9-2. University model (US)

semester 1 semester 2

year 1
CS101I. Programming Fundamentals
Calculus I

CS102I. The Object-Oriented Paradigm
CS115. Discrete Structures for Computer Science
Calculus II

year 2
CS103I. Data Structures and Algorithms
Science course I

CS120. Introduction to Computer Organization
Science course II
Probability and Statistics

year 3
CS210T. Algorithm Design and Analysis
CS220T. Computer Architecture
Advanced mathematics elective

CS225T. Operating Systems
CS280T. Social and Professional Issues
CS elective
Undergraduate research project

year 4
CS230T. Net-centric Computing
CS262T. Information and Knowledge Management
CS290T. Software Development
Undergraduate research project

CS490. Capstone Project
CS elective
CS elective

Figure 9-2 outlines the structure of a curriculum designed for a U.S. research university.
The sections that follow offer additional notes on the design decisions that affect the
overall structure of the model.

Introductory and intermediate courses
As noted in the preceding section, any of the introductory sequences followed by
anything other than the highly compressed model is appropriate for the research
university setting. The curriculum outlined in Figure 9-2, for example, uses a three-
course imperative introductory sequence and the traditional approach to the intermediate
level, with the following modifications:

1. We have added the optional course CS120(Introduction to Computer Organization),
as outlined in the discussion of the systems-based approach.

2. We have replaced the pair of “traditional” courses in artificial intelligence and
databases, CS260 and CS270, with the combined course CS262 (Information and
Knowledge Management), as outlined in the discussion of the compressed approach.

CS120 is optional in that all of its core units are covered in other courses. If CS120 is
included, the later courses will be able to go into greater depth. If it is not, it might be
replaced by another CS elective or simply deleted from the curriculum. CS120 is
included in this example because such programs often desire earlier and deeper coverage
of systems material than the pure traditional approach offers, and also because CS120 is a
course that can be easily offered at two-year colleges.

One of the great strengths of the CC2001 core is the requirement of material in
information management and intelligent systems. Many schools have put almost all such
material into elective courses. For this curriculum, we suggest one required course
combining the two, with the expectation that many schools would additionally continue
to run advanced electives in both.

Science and mathematics
A deep grounding in science and mathematics is one of the usual goals of research
university computer science programs. We therefore require two semesters of science.
In keeping with the desire for mathematical depth and maturity, we require the following
courses in mathematics:

CC2001 Computer Science volume – 48 –
Final Report (December 15, 2001)

• One semester of discrete structures, represented by Discrete Structures for Computer
Science. Institutions that wish to offer a more thorough grounding in this material
could easily expand this coverage by implementing the two-semester sequence
Discrete Structures I-Discrete Structures II.

• An introduction to calculus at the level necessary to take advanced math electives such
as logic, linear algebra, and abstract algebra. Depending on the institution, the calculus
requirement might range from a one-semester course to a sequence with three or more
courses. On the whole, we believe that it is often more appropriate for computer
science students to take less calculus and more courses in discrete mathematics or
other material more directly relevant to the practice of computer science. In many
institutions, however, the structure of the mathematics curriculum may be outside the
control of the computer science program, leaving relatively little flexibility for the
department.

• One semester of probability and statistics.
• At least one additional semester of advanced mathematics taken as an elective.

Completing the curriculum
To complete their degree programs, students must be exposed to additional material
beyond what exists in the required core. In many institutions, it makes sense to allow
students to determine what areas they would like to pursue. Thus, one approach to the
problem of completing the curriculum is simply to require students to include some
number of elective courses in their program. Departments, however, have the option to
achieve more specific educational objectives by adjusting the degree requirements. For
example, a program may ensure breadth by requiring the electives to be in different areas.
Conversely, a program may seem to ensure depth in a subfield by requiring students to
take a sequence of advanced courses in the same area. Depending on local strengths and
interests, some schools may choose to require one or more advanced courses explicitly.
As an example, schools that are particularly concerned with mathematical foundations
may require CS310 (Advanced Algorithmic Analysis).

In addition to the advanced material, a undergraduate program must also expose students
to the issues involved in programming large-scale systems. Implementing such a
requirement allows for wide variations in strategy. Students might gain their experience
with programming in the large through either a one-semester capstone project (CS490), a
two-semester capstone project (CS491-CS492), or an advanced software development
course (CS390).

For undergraduates, one of the great strengths of a research university is that the faculty
are actively engaged in the process of extending the frontiers of the discipline. For many
students, however, that aspect of the academic mission is largely invisible, because
relatively few have the opportunity to participate in research projects during their
undergraduate years. Students who have the chance to participate gain significantly from
that experience in the following ways:

• They get to experience firsthand the excitement associated with creative research.
• They develop a strong connection to a faculty member who can serve as a mentor.
• They establish a track record of project experience that will prove useful to them, both

in industry and in securing admission to graduate programs.

9.4.2 A discipline-based model
In the United States and Canada, students at a university generally take a large fraction of
their course work outside their area of specialization. In other countries, this generalist

CC2001 Computer Science volume – 49 –
Final Report (December 15, 2001)

approach to university education is rare. Instead, students are expected to concentrate on
a single field of study, possibly augmented by a few courses in closely related disciplines.
We refer to such curricula as discipline based. The discipline-based approach is typical
of computer science curricula in England, for example, where such programs have a
three-year duration. Other countries often use a four-year model, but it is relatively easy
to tailor the basic discipline-based model to fit local conditions.

Discipline-based curricula typically offer some level of flexibility at all levels of the
program. In the first year, for example, the flexibility comes from the opportunity
students have to widen their perspective through the choice of electives. Those electives
may address some interesting application area, for example, and so enhance or broaden
the student’s overall education. Those electives may also be used to provide
opportunities for exploration if the student is unsure of the intended nature of the final
degree. The precise details here will vary from institution to institution and depend on
matters such as the entry qualifications for the specific program of study. For instance,
some institutions may require that applicants already hold a relatively advanced
qualification in mathematics, or even in computer science itself. Then the details of the
program need to be adjusted to reflect such considerations.

Another opportunity for flexibility occurs in the final year where optional advanced
classes allow a student to specialize, often with a view to exploring or enhancing career
prospects in a particular direction. By this stage it is expected that courses are leading
students to the frontiers of their subject, at least when viewed from the perspective on an
undergraduate education.

A three-year implementation of a discipline-based curriculum appears in Figure 9-3. This
curriculum reflects the following design decisions beyond the general guidelines
proposed in this report:

• Programming is difficult to teach and requires considerable time and attention in the
curriculum. The courses that provide students with a foundation in programming are
critical to the curriculum. Students must have frequent and repeated opportunities to
practice their programming skills throughout their degree program in a way that allows
later courses to build on the work of earlier ones.

• The overall program must include extensive opportunities for students to develop
practical skills. Most courses in a computer science program must include a
laboratory component that requires students to develop their technical skills and
acquire an understanding of effective professional practice. Students must not be
allowed to pass a course without demonstrating an appropriate level of mastery of the
associated practice.

• The sample curriculum does not include a specific course in science but instead
assumes that this material can be integrated into the elective structure. The
experimental method can be addressed in the context of a course on Human Computer
Interaction, for example; teaching such material in the setting of computer science is
far preferable to teaching it in isolation.

• Insofar as possible, it is important to teach supporting material in the context of its
application to computer science. The comment in the previous point about teaching
material in context applies broadly in the curriculum. Much of the supporting
material—including mathematics, certain transferable skills, professional practice, and
so on—can be taught more effectively in context.

CC2001 Computer Science volume – 50 –
Final Report (December 15, 2001)

Figure 9-3. Discipline-based model

semester 1 semester 2

year 1
CS101O. Introduction to Object-Oriented
Programming
CS105. Discrete Structures I
CS120. Introduction to Computer Organization

CS102O. Objects and Data Abstraction
CS106. Discrete Structures II
Probability and statistics

year 2
CS103O. Algorithms and Data Structures
CS210S. Algorithm Design and Analysis
CS220S. Computer Architecture
CS271S. Information Management

CS226S. Operating Systems and Networking
CS240S. Programming Language Translation
CS255S. Computer Graphics
CS291S. Software Development and Systems
Programming

year 3
CS260S. Artificial Intelligence
CS380. Professional Practice
CS elective
CS491. Capstone Project I

CS326. Concurrent and Distributed Systems
CS393. Software Engineering and Formal
Specification
CS elective
CS492. Capstone Project II

9.4.3 A small department model
This curriculum model is designed for computer science programs in small departments.
We use the term “small department” in an informal way, since what is considered “small”
at one school may be thought of as “rather large” at another. In general, the following
model would be appropriate for departments with fewer than five or six faculty, but may
nonetheless be attractive to larger departments as well.

The primary effect of a small faculty on the design of the curriculum is that the number of
computer science courses in the program will be less than that typically found at larger
schools. For example, the university model for U.S. universities described in section
9.4.1 contains 15 computer science courses; the discipline-based model from section
9.4.2 contains 21. Offering this many courses would not be possible in a department with
five or six faculty members. A major in a small department might typically include 9-11
computer science courses, along with supporting mathematics classes and a project.

The small-department model is illustrated in Figure 9-4, which specifies a total of 14
courses, organized into the following groups:

1. Supporting mathematics courses 3
2. Introductory computer science courses 2
3. Intermediate computer science courses 5
4. Advanced computer science electives 3
5. Capstone project 1

Total courses 14

The courses in each of these groupings are described in more detail in the sections that
follow.

Supporting mathematics courses
The number of supporting mathematics courses often depends on how much space is
available in the curriculum. While four or five supporting courses is certainly desirable,
it may not be possible to require that level of mathematics and satisfy all the other
requirements of an undergraduate degree. We therefore recommend the following
minimum mathematics requirement, with the caveat that, if room is available, additional
mathematics courses would be a desirable addition:

CC2001 Computer Science volume – 51 –
Final Report (December 15, 2001)

Figure 9-4. Small department model

semester 1 semester 2

year 1
CS111O. Object-Oriented Programming
CS105. Discrete Structures I

CS112O. Object-Oriented Design and Methodology
CS106. Discrete Structures II

year 2
CS210C. Algorithm Design and Analysis
CS220C. Computer Architecture

CS226C. Operating Systems and Networking
Mathematics elective

year 3
CS262C. Information and Knowledge Management
CS elective

CS292C. Software Development and Professional
Practice
CS elective

year 4
CS elective CS490. Capstone Project

CS105. Discrete Structures I
CS106. Discrete Structures II
A minimum of one additional mathematics elective, chosen to support the

interests of the student and the advanced electives that are used to complete
the program

We have specified the two-semester approach to discrete mathematics because the topics
covered in these courses are the most important area of mathematics for computer science
majors. Currently, most schools offer a one-semester course. However, there is now so
much material to be covered that a two-semester sequence can be far more effective than
a single course.

The third required mathematics course is not specified. Instead, it should be selected in
conjunction with the student’s advisor based on the interests of the student and the
advanced courses they plan on taking. It might include more advanced calculus, linear
algebra, mathematical logic, mathematical modeling, or numerical analysis.

Introductory computer science courses
For the introductory computer science courses, we recommend either of the following
two-course sequences described in Chapter 7:

CS111O. Object-Oriented Programming
CS112O. Object-Oriented Design and Methodology

or

CS111F. Introduction to Functional Programming
CS112F. Objects and Algorithms

Both of these introductory sequences focus on important conceptual issues, such as
problem solving, design specifications, and language paradigms, rather than the syntactic
details of a specific programming language. Either sequence would be a good fit with a
small department curriculum because they both introduce students to many fundamental
ideas and enduring concepts in a small number of classes.

Intermediate computer science courses
For the intermediate course sequence, we selected the compressed approach presented in
Section 8.2.2. This model contains five required courses that cover all 280 hours of
required core material. These five courses are:

CC2001 Computer Science volume – 52 –
Final Report (December 15, 2001)

CS210C. Algorithm Design and Analysis
CS220C. Computer Architecture
CS226C. Operating Systems and Networking
CS262C. Information and Knowledge Management
CS292C. Software Development and Professional Practice

There are several reasons why this intermediate course sequence is appropriate for a
small program. First, the core has been compressed into five courses. This compression
allows the full 280 hours to be covered by a program with limited room in its major.
Even small programs should be able to offer a five-course core. Second, and perhaps
even more important, this sequence of courses is quite different from a typical “artifacts
based” core that offers a separate class for various software artifacts, such as compilers,
operating systems, data bases, networks, graphics, and the World-Wide Web. Instead,
this model includes a number of “crosscutting” courses that integrate related material
from different areas of computer science. For example, CS262C (Information and
Knowledge Management) incorporates material from both artificial intelligence and
databases, along with such algorithm-oriented topics as data compression and encryption.
Finally, the issues of ethics and professionalism have not been relegated to a single
course independent of and unrelated to the rest of the curriculum. This important
material has instead been incorporated into many intermediate courses. For example,
CS262C treats the ownership of intellectual property, while CS292C (Software
Development and Professional Practice) includes modules on the social context of
computing, ethical and professional responsibilities, and risks and liabilities in software
development.

Advanced computer science electives
Advanced courses serves three purposes, as follows:

1. Exposing the student to advanced material beyond the core
2. Demonstrating applications of fundamental concepts presented in the core courses
3. Providing students with a depth of knowledge in at least one subarea of computer

science

As with the number of required mathematics courses, the exact number of electives in a
given program will typically be a function of how much room is available in the
curriculum, as well as college distribution requirements. However, the number of
electives should be large enough to provide depth in at least one subarea of computer
science. We propose a minimum of three advanced electives, while realizing that some
schools may enlarge or decrease this number based on local conditions. We feel that
three elective courses can provide sufficient opportunity for depth of study while keeping
the overall program to a manageable size.

To ensure that students develop a reasonable level of depth in at least one subarea, it
makes sense to require that a minimum of two out of three electives be chosen from a
single area within the body of knowledge. The advanced courses are listed by area in
Figure 9-1.

Capstone project
The final component of this curriculum model is CS490, Capstone Project. This course
provides students with opportunities to enhance skills that may not be easy to accomplish
in the traditional classroom setting, such as working in teams, interacting with users,
developing formal problem specifications, reviewing the research journals, building
prototypes, scientific writing, and making oral presentations.

CC2001 Computer Science volume – 53 –
Final Report (December 15, 2001)

The most popular model for a capstone is a team-oriented, software engineering effort in
which students design a solution to an information-based problem and work in teams to
implement that solution. However, there is another model that might be more attractive
to outstanding students who are thinking about graduate study and research, as opposed
to private-sector employment. For these students, an alternative capstone format is a
research experience that includes some original work, a review of the scientific literature,
and an investigation of a proposed solution, followed by a scientific paper and/or an oral
presentation of the results. It is important to remember that these are undergraduates and
be realistic about the amount and quality of research expected. Even so, it may be more
worthwhile to expose outstanding students to the challenges of research than to have
them design and build yet another program.

Finally, each school must determine how long the capstone project will last. To truly get
the most out of it (especially a research-based capstone) a year-long project is extremely
beneficial. However, the resources available to a small department may constrain the
project experience to a single semester.

9.4.4 Programs for two-year colleges
In the United States, a large fraction of computer science students begin their studies in
two-year colleges rather than at four-year institutions. As a result, computer science
programs in these institutions are a critical target audience for the Computing Curricula
2001 project. Because two-year colleges have specific characteristics and concerns that
are in some respects different from those of four-year programs, the CC2001 Task
Force—in conjunction with the Two-Year College Committee of the ACM and its newly
formed counterpart in IEEE-CS—has decided to publish a separate report that offers
more specific recommendations for the two-year college community.

Even though the recommendations for two-year colleges are included in a separate report,
there are several aspects of the two-year college model that are important for U.S. four-
year institutions as well. The central concern that links the programs in two- and four-
year institutions is that of articulation, which refers to the process of determining how
two-year college students can make an effective transition to a four-year model to
complete their undergraduate study. The issue of articulation is extremely important for
four-year institutions that accept students from the two-year schools and is therefore
worth some discussion in this report.

Programs at two-year colleges generally fall into one of two categories—career or
transfer—depending on the nature of the institution and the needs of local industry. A
career program typically provides a broad educational foundation as well as the specific
knowledge, skills, and abilities needed to proceed directly into the work environment.
Students graduating from a two-year career program typically enter the work force
immediately. Once they have gained work experience, some graduates of career-oriented
programs may return to a four-year institution to complete their undergraduate degree,
and some may move immediately in that direction. In a transfer-oriented program, most
students are expected to transfer to a four-year program. Unless the two-year curriculum
was specifically designed to enable such transfers, however, students will often need to
take additional courses at the introductory or early intermediate levels.

Careful articulation of courses and programs between two- and four-year institutions
greatly facilitates the transfer of students from one institution to the other. The overall
goal of articulation is to make that transfer process as seamless as possible. Efficient and
effective articulation requires accurate assessment of courses and programs as well as
meaningful communication and cooperation. That articulation process, however, is
complex for the following reasons:

CC2001 Computer Science volume – 54 –
Final Report (December 15, 2001)

1. Students at two-year colleges are likely to come from outside the traditional student
population and therefore have a greater variety of experiences then their four-year
counterparts.

2. Because many two-year college curricula offer internship or coop programs, the
background of students from two-year colleges often contains a blend of theory and
practical skills that may be difficult to map into a traditional four-year program.

3. Courses do not always correspond on a one-to-one basis in the two-year and four-year
programs. Even so, it is often possible to identify a sequence of courses in one
institution that matches a sequence in the other, even though the number of courses in
the two sequences may differ.

In light of this complexity, it is important for institutions to view the articulation process
as a negotiated exercise that must be carried out in an ongoing fashion.

Faculty of both institutions must ensure that programs are clearly defined, that program
objectives are followed responsibly, and that students are evaluated effectively against
these defined standards. When program exit points are specified in an articulation
agreement, faculty at the two-year institution must cover sufficient material to prepare
students to pursue further academic work at least as well as students at the four-year
institution.

A fully articulated transfer program typically provides a path into a four-year program
and sufficient coursework to prepare the students to take advanced courses in the four-
year program. As a result, transfer student are able to enter the four-year program as
juniors, right along with their counterparts who started at the four-year school. We
believe that institutions that base their early curricula on the models presented in Chapters
7 and 8 will be well positioned to design effective articulation programs that enable such
smooth transitions.

CC2001 Computer Science volume – 55 –
Final Report (December 15, 2001)

Chapter 10
Professional Practice

As we enter the 21st century, an unprecedented opportunity exists to make professional
practice a seamless part of the curriculum in computer science and other computing
disciplines. Understanding professional practice is critical for most computer science
students since the vast majority will enter the workforce upon graduation. In this chapter,
we explore various strategies for incorporating professional practice into the computer
science curriculum. The individual sections review the underlying rationale, current
practice in education, support for professional practice from both the private and public
sector, techniques for incorporating professional practice into a curriculum, and strategies
for assessing the effectiveness of those techniques.

10.1 Rationale
The need to incorporate professional practice into the curriculum is based upon real-
world issues, such as the needs of the public and private sector, the public’s demand for
higher quality products, the increasing number of software liability cases, and the need to
promote life-long learning after graduation. In most cases, students enter school without
a complete knowledge or appreciation for these issues, which is a source of frustration
both for those who teach these students and for those who hire them. Indeed, as students
learn more about professional practice and the underlying issues, they become more
interested in their studies and how they can work well with others. Incorporating
professional practice into the curriculum can therefore serve as a catalyst to awaken and
broaden a student’s interest in computing.

Both the private and public sectors have a vested interest in students learning professional
practice. They find that students who have experience with the realities of professional
work understand the value of interpersonal skills in collaborating with team members and
clients, maintain their focus on producing high-quality work, contribute their time and
talents to worthy outside causes, engage in life-long learning, and participate in
improvements in their firm. Each year, for example, the National Association of Colleges
and Employers conducts a survey to determine what qualities employers consider most
important in applicants seeking employment [NACE2001]. In 2001, the top ten factors
were

01. Communication skills (verbal and written)
02. Honesty/integrity
03. Teamwork skills
04. Interpersonal skills
05. Motivation/initiative
06. Strong work ethic
07. Analytical skills
08. Flexibility/adaptability
09. Computer skills
10. Self-confidence

That employers are candidates with these general qualities underscores the importance of
making professional practice a central component of the curriculum.

CC2001 Computer Science volume – 56 –
Final Report (December 15, 2001)

The growing demand for better, less defect-ridden products has also increased the
pressure to incorporate professional practice into the curriculum. Haphazard software
engineering techniques are widely recognized as a significant factor in producing
software with a high number of defects. As a result, clients are demanding proof of
sound software processes before they will sign a contract with a software provider. In
particular, after losing millions of dollars on unworkable or undelivered software, U.S.
Government bodies, such as the Department of Defense, require all government
contractors to operate at Level 3 of the Software Engineering Institute’s Capability
Maturity Model [Paulk95]. To meet these guidelines, contractors must have a solid,
sound, organization-wide, and reliable process in place to develop software. Unsatisfied
clients, particularly those who do not know their software providers well, are taking their
software providers into court to recover their costs, force completion of software, or seek
compensation for damages. Students therefore need to understand the value of
establishing face-to-face relationships with clients, agreeing to requirements that can be
implemented, and producing the highest quality software possible.

Both the IEEE and the ACM promote the development of professional responsibility in
several ways.

• They develop and promote codes of ethics [ACM2001, IEEE2001, SEEPP98] to which
members are expected to adhere. These codes, in general, promote honesty, integrity,
maintenance of high standards of quality, leadership, support of the public interest, and
life-long learning.

• They sponsor established subgroups—the Society on Social Implications of
Technology (SSIT) and the Special Interest Group on Computers and Society
(SIGCAS)—that focus directly on ethical and professional issues.

• They develop and refine curricular guidelines, such as the ones in this report and its
predecessors.

• They participate in the development of accreditation guidelines that ensure the
inclusion of professional practice in the curriculum [ABET2000, CSAB2000].

• They support the formation of student chapters which encouraged students to develop
a mature attitude toward professional practice.

• They provide opportunities for lifelong professional development through technical
publications, conferences, and tutorials.

Both students and society must be educated as to what they can and should expect from
people professionally trained in the computing discipline. Students, for example, need to
understand the importance of professional conduct on the job and the ramifications of
negligence. They also need to recognize that the professional societies, through their
codes of ethics and established subgroups emphasizing professional practice, can provide
a support network that enables them to stand up for what is ethically right. By laying the
groundwork for this support network as part of an undergraduate program, students can
avoid the sense of isolation that young professionals often feel and be well equipped to
practice their profession in a mature and ethical way.

10.2 Current practice in education
Many strategies currently exist for incorporating professional practice into the
curriculum. One of the most common characteristics of these strategies are courses that
help students strengthen their communication, problem-solving, and technical skills.
These skills may be fostered in computing courses or, alternatively, in courses outside the
computer science department, such as a speech class in a communication department or a
technical writing class in an English department. Accreditation bodies, however, usually

CC2001 Computer Science volume – 57 –
Final Report (December 15, 2001)

require not only that students acquirethese skills—either through general education
requirements or through courses required specifically for computer science—but also that
students applythese skills in their later courses.

The level of coverage assigned to professional practice varies depending on institutional
commitment, departmental resources, and faculty interest. For example, in 1999, Laurie
King (Department of Mathematics and Computer Science at Holy Cross College)
conducted an informal survey concerning the inclusion of ethics in curricula through the
ACM SIGCSE list. Of the 74 schools that reported back, 40 schools had enough
coverage of ethics that would meet CSAB Criteria 2000 [CSAB2000]. Although many
schools clearly did not consider this material to be essential, it is encouraging that more
than half of the schools did. With the growing emphasis on professionalism in
accreditation criteria, it is likely that other schools will strengthen their commitment to
teaching professional practice.

The following list outlines several potential mechanisms for incorporating additional
material on professional practice:

• Senior capstone courses. These courses typically form a one- to a two-semester
sequence during the student’s last year. Usually, students must work in teams to
design and implement projects, where those projects must involve consideration of
real-world issues including cost, safety, efficiency, and suitability for the intended
user. The projects may be developed solely for the class, but may also involve other
on- or off-campus clients. Although the emphasis of the course is on project work and
student presentations, some material on intellectual property rights, copyrights,
patents, law, and ethics may be included.

• Professionalism, ethics, and law courses. These courses are one semester long and
expose students to issues of professional practice, ethical behavior, and computer law.
Topics included may be history of computing, impact of computers on society,
computing careers, legal and ethical responsibilities, and the computing profession.

• Practicum/internship/co-op programs. These programs are sponsored by the
institution (preferably) or department to allow students to have the opportunity to work
in industry full- or part-time before graduation. At least one to two coordinators
should be hired to oversee the program and it is helpful to have one coordinator at the
college level as well as to have a part-time coordinator within a department. Students
typically work during the summers and/or from one to three nonconsecutive semesters
while they are engaged in their undergraduate degree. The students who do a co-op or
internship generally do so off-campus and so may interrupt their education for a
summer or a semester. Students are usually paid for their work, but in some cases may
also be allowed course credit.

• Team-based implementation courses. These courses emphasize the process of
software development and typically include a team project. Course topics include
software processes, software management, economics, risk management, requirements
engineering, design, implementation, maintenance, software retirement, software
quality assurance, ethics, and teamwork. Topic coverage is usually broad rather than
in-depth.

Many courses outside the computer science department can also help students to develop
stronger professional practice. Such courses include, but are not limited to, philosophical
ethics, psychology, business management, economics, technical communications, and
engineering design.

CC2001 Computer Science volume – 58 –
Final Report (December 15, 2001)

10.3 Supporting professional practice
Support for including more professional practice in the curriculum can come from many
sources. The sections that follow look at the responsibilities of the public and private
sectors; the relationship between academic preparation and the work environment; and
the roles of university administrations, faculty, and students in making professional
practice an educational priority.

10.3.1 The private and public sectors
Most students graduating from universities go on to employment in the private or public
sector. In their role as the primary consumer of graduating students, industry and
government play an important role in helping educational institutions promote
professional practice. As an example, students who take advantage of industrial co-ops
or government internships may mature faster in their problem-solving skills and become
more serious about their education. Such internships may also help the institutions that
offer them, in that a student who has an internship with a company may choose to work
there again after graduation. With private/public sector support, professional practice
coverage is given a necessary augmentation both inside and outside the classroom.

One of the most important ways that the private and public sectors can support the
education process is to encourage their employees to play a greater role in helping to train
students. These employees can offer support in a number of ways:

• They can function in the role of mentors to students working on projects.
• They can give special presentations to classes for telling students and faculty about

their firm, their work, and their development processes.
• They can take part-time positions as adjunct instructors to strengthen a university’s

course offerings.
• They can provide in-house training materials and/or classes to faculty and students in

specialized research, process, or software tool areas.
• They can serve on industrial advisory boards, which allows them to provide valuable

feedback to the department and institution about the strengths and weaknesses of the
students.

In each of these ways, institutions in the private and public sectors can establish
important lines of communication with the educational institutions that provide them with
their future employees.

In addition to the various opportunities that take place on campus, industry and
government also contribute to the development of strong professional practice by
bringing students and faculty into environments outside of academia. Students and
faculty may take field trips to local firms and begin to establish better relationships. Over
a longer term, co-op, practicum, and internship opportunities give students a better
understanding of what life on the job will be like. In addition, students may become
more interested in their studies and use that renewed interest to increase their marketable
potential. Students may also form a bond with particular employers and be more likely to
return to that firm after graduation. For faculty, consulting opportunities establish a
higher level of trust between the faculty member and the company. As a result of these
initiatives, employers, students, and faculty know more about each other and are more
willing to promote each other’s welfare.

In what remains one of the most important forms of support, private and public sectors
may also make donations or grants to educational institutions and professional societies

CC2001 Computer Science volume – 59 –
Final Report (December 15, 2001)

in the form of hardware, software, product discounts, money, time, and the like. Often,
these donations and grants are critical in providing updated resources, such as lab
hardware and software, and in funding student scholarships/awards as well as faculty
teaching/research awards. They serve to sponsor student programming, design, and
educational contests. Grants can enable more research and projects to be accomplished.
At this level, private/public sectors help to ensure the viability/progress of future
education and advances in the computing field.

Through patience, long-term commitment, understanding of each other’s constraints, and
learning each other’s value systems, private/public sectors and education can work
together to produce students skilled in professional practice and behaviors. Their
cooperative agreement is essential for producing students who value a high ethical
standard and the safety of the people who use the products the students will develop as
professionals.

10.3.2 Modeling local and international work environments
Just as industry representatives increasingly seek graduates who are “job ready,” most
students expect to practice computing in the workplace upon graduation without
significant additional training. Although the educational experience differs from that of
the workplace, educators need to ease the transition from academia to the business world
by:

• Mimicking the computing resources of the work environment
• Teaching students how to work in teams
• Providing significant project experiences

Introducing these points into the curriculum makes it possible to model significant issues
in the local and international work environment. Faculty can discuss and have students
apply international, intercultural, and workplace issues within the context of computing
resources, teamwork, and projects.

Because computing environments change rapidly and several different ones exist, it is not
possible to predict the exact environment that students will use upon graduation. As a
result, it is not advisable to focus attention in the curriculum on a particular set of tools.
Exposure to a wide variety of computing platforms and software tools provides good
preparation for professional work, resulting in flexible learners rather than students who
immaturely cling to their one familiar environment.

Learning how to work in teams is not a natural process for many students, but it is
nonetheless extremely important. Students should learn to work in both small and large
teams so that they acquire planning, budgeting, organizational, and interpersonal skills.
Ample course material should support the students in their teamwork. The lecture
material may include project scheduling, communication skills, the characteristics of
well-functioning and malfunctioning teams, and sources of stress for team environments.
Assessment can be based on the result of the team’s work, the individual work of the
members, or some combination thereof. Team member behavior may also play a factor
in the assessment.

Significant project experiences can enhance the problem-solving skills of students by
exposing them to problems that are not well defined or that do not have straightforward
solutions. Such projects may be a controlled, in-class experience or have a certain
amount of unpredictability that occurs with an outside client. The project should serve to
stretch the student beyond the typical one-person assignments that exercise basic skills in

CC2001 Computer Science volume – 60 –
Final Report (December 15, 2001)

a knowledge area. Beyond that, projects can also cut across several knowledge areas,
thereby helping students to bring all their basic skills together.

10.3.3 Administration, faculty, and student roles
At the highest institutional level, the administration must support faculty professional and
departmental development activities. Such activities may include consulting work,
professional society and community service, summer fellowships, obtaining certifications
and professional licensure, achieving accreditation, forming industrial advisory boards
with appropriate charters, establishing co-op/internship/practicum programs for course
credit, and creating more liaisons with the private and public sectors. Such activities can
be extremely time-consuming. They are, however, enormously valuable to both the
individual and the institution, which must take these activities into account in decisions of
promotion and tenure.

Faculty and students can work together by jointly adopting, promoting, and enforcing
professional society ethical and professional behavior guidelines. Faculty should join
professional societies and help to establish student chapters of those societies at their
institutions. Through the student chapters, awards may be given for significant
achievement in course work, service to the community, or related professional activities.
In addition, student chapters may provide a forum for working with potential employers
and be instrumental in obtaining donations, speakers, and mentors from outside the
institution.

10.4 Incorporating professional practice into the curriculum
The incorporation of professional practice must be a conscious and proactive effort
because much of the material must be interwoven into the fabric of existing curricula.
For example, the introductory courses in the major can include discussion and
assignments on the impact of computing on society and the importance of professional
practice. As students progress into their sophomore-level courses, they can start to keep
records of their work as a professional might do in the form of requirements, design, and
test documents.

Additional material, such as computer history, techniques for tackling ill-defined
problems, teamwork with individual accountability, real-life ethics issues, standards and
guidelines, and the philosophical basis for ethical arguments, may also be covered either
in a dedicated course or distributed throughout the curriculum. The distributed approach
has the advantage of presenting this material in the context of a real application area. On
the other hand, the distributed approach can be problematical in that professional practice
is often minimized in the scramble to find adequate time for the technical material.
Projects, however, may provide a natural outlet for much of this material particularly if
faculty can recruit external clients needing non-critical systems. When they engage in
service-learning projects in the community or work with external clients, students begin
to see the necessity for ethical behavior in very different terms. As a result, those
students learn much more effectively how to meet the needs of the client’s ill-defined
problem. No matter how professional practice is integrated into the curriculum, however,
it is critical that this material be reinforced with exercises, projects, and exams.

For departments with adequate faculty and resources, courses dedicated to teaching
professional practice may be appropriate. These courses include those in professional
practice, ethics, and computer law, as well as senior capstone and other appropriate
courses. More advanced courses on software economics, quality, safety, and security
may be included as well. As noted at the end of section 10.2, these courses may be from

CC2001 Computer Science volume – 61 –
Final Report (December 15, 2001)

disciplines outside of computer science and still have a profound effect on the
professional development of students.

10.5 Assessing professional practice work
Faculty can promote the positive assessment of professional practice work by establishing
an infrastructure where student work is evaluated under common standards and where
professional completion of assigned work is actively encouraged. The infrastructure may
be built upon the following:

• Outcomes-based assessment
• Reviewing assignments, projects, and exams for appropriate inclusion of professional

practice material
• Critically reviewing and establishing sound measurements on student work to show

student progress and improvement
• Getting students involved in the review and assessment process so that they get a better

sense of the assessment process
• Employing professionals in the private and public sectors to help in assessing student

project work
• Using standardized tests to measure overall student progress
• Taking post-graduation surveys of alumni to see how well alumni thought their

education prepared them for their careers
• Obtaining accreditation to demonstrate that certain education standards for

professional practice have been met

The assessment process should encourage students to employ good technical practice and
high standards of integrity. It should discourage students from attempting to complete
work without giving themselves enough time or in a haphazard manner, such as starting
and barely completing work the night before an assignment is due. The assessment
process should hold students accountable on an individual basis even if they work
collectively in a team. It should have a consistent set of measurements so that students
become accustomed to using them and learn how to associate them with progress or lack
thereof.

CC2001 Computer Science volume – 62 –
Final Report (December 15, 2001)

Chapter 11
Characteristics of CS Graduates

While consideration of the body of knowledge is one major issue in determining whether
a specific program meets the necessary requirements to be called a computer science
degree, other issues must also be addressed. Typically, these issues are concerned with
the overall nature of the discipline, the breadth and depth of a program, plus other factors
relating to practical, personal, and transferable skills.

In general terms, institutions are expected to define outcomes and objectives that
characterize their particular programs and indicate that their curricula are at the level of a
undergraduate degree in computer science. Degree programs in computer science can
take various forms, each of which could prepare students for different but valid careers.
At one extreme, a degree program might provide opportunities for students to take
courses on a wide range of topics spanning the entire area of computer science.
Graduates from such programs would have great flexibility and might be of particular
value either in emerging areas where specialist courses may not be established or in
contexts where their ability to span the field would be useful. At another extreme, a
program might take one very specific aspect of computer science and cover it in great
depth. The graduates from such programs would typically tend to seek opportunities in
the area of specialization they have studied, whether it be the development of multimedia
systems, network design, formal verification for safety-critical systems, electronic
commerce, or other specialities that emerge and become important. Despite such
differences in emphasis and content, however, there are certain minimal characteristics
that are expected of any graduate in computer science. The purpose of this chapter is to
explore what those characteristics should be.

The material in this chapter draws heavily on a report designed to identify the desired
characteristics of computer science graduates in the United Kingdom [QAA2000]. Its
purpose is to define standard thresholds that all graduates of computer science programs
are expected to achieve. To a large extent, the characteristics for graduates outlined in
the chapter cover the same ground as the curricular objectives outlined in the earlier
chapters. The difference is primarily one of perspective. Looking at the objectives of an
academic program in terms of the characteristics of its graduates makes it easier to design
assessment measures that ensure that those objectives are being met.

11.1 General characteristics of computer science graduates
While the characteristics that one expects of graduates are related to the learning
objectives associated with the core units, the expectations one assigns to those who
complete an undergraduate degree in computer science reflect a more global level of
student achievement. The learning objectives detailed in Appendix A specify what a
student must know at the conclusion of any particular unit. In this section, the goal is to
identify the characteristics that a successful graduate should possess. At a broad level,
these characteristics can be expressed as follows:

• System-level perspective. The objectives associated with individual units in the body
of knowledge tend to emphasize isolated concepts and skills that can lead to a
fragmented view of the discipline. Graduates of a computer science program must
develop a high-level understanding of systems as a whole. This understanding must
transcend the implementation details of the various components to encompass an
appreciation for the structure of computer systems and the processes involved in their
construction and analysis.

CC2001 Computer Science volume – 63 –
Final Report (December 15, 2001)

• Appreciation of the interplay between theory and practice. A fundamental aspect of
computer science is the balance between theory and practice and the essential link
between them. Graduates of a computer science program must understand not only the
theoretical underpinnings of the discipline but also how that theory influences practice.

• Familiarity with common themes. In the course of an undergraduate program in
computer science, students will encounter many recurring themes such as abstraction,
complexity, and evolutionary change. Graduates should recognize that these themes
have broad application to the field of computer science and must not compartmentalize
them as relevant only to the domains in which they were introduced.

• Significant project experience. To ensure that graduates can successfully apply the
knowledge they have gained, all students in computer science programs must be
involved in at least one substantial software project. Such a project demonstrates the
practical application of principles learned in different courses and forces students to
integrate material learned at different stages of the curriculum.

• Adaptability. One of the essential characteristics of computer science over its
relatively brief history has been an enormous pace of change. Graduates of a computer
science program must possess a solid foundation that allows them to maintain their
skills as the field evolves. Strategies for achieving this adaptability are described in
section 11.3.

11.2 Capabilities and skills
Students of computer science must develop a wide range of capabilities and skills. Some
of those skills are specific to degrees in computer science; others are more generic and
would be expected of any graduate of a technical discipline. These capabilities and skills
may be divided into three general categories:

• Cognitive capabilities relating to intellectual tasks specific to computer science
• Practical skills relating to computer science
• Additional transferable skills that may be developed in the context of computer science

but which are of a general nature and applicable in many other contexts as well

The required capabilities and skills are outlined in Figure 11-1. In each case, the
institution must ensure that the skills in each of these categories—cognitive, practical,
and general—receive sufficient coverage in the curriculum that all students will have had
the necessary background prior to graduation.

11.3 Coping with change
An essential requirement of any computer science degree is that it should enable
graduates to cope with—and even benefit from—the rapid change that is a continuing
feature of the computing field. But how does one achieve this goal in practice? At one
level, the pace of change represents a challenge to academic staff who must continually
update courses and equipment. At another level, however, it suggests a shift in pedagogy
away from the transmission of specific material, which will quickly become dated,
toward modes of instruction that encourage students to acquire knowledge and skills on
their own.

Fundamentally, teaching students to cope with change requires instilling in those students
an attitude that promotes continued study throughout a career. To this end, a computer
science curriculum must strive to meet the following challenges:

• Adopt a teaching methodology that emphasizes learning as opposed to teaching, with
students continually being challenged to think independently.

CC2001 Computer Science volume – 64 –
Final Report (December 15, 2001)

Figure 11-1. Capabilities and skills for computer science graduates

Cognitive capabilities and skills relating to computer science
• Knowledge and understanding. Demonstrate knowledge and understanding of

essential facts, concepts, principles, and theories relating to computer science and
software applications.

• Modeling. Use such knowledge and understanding in the modeling and design of
computer-based systems in a way that demonstrates comprehension of the tradeoff
involved in design choices.

• Requirements. Identify and analyze criteria and specifications appropriate to specific
problems, and plan strategies for their solution.

• Critical evaluation and testing. Analyze the extent to which a computer-based
system meets the criteria defined for its current use and future development.

• Methods and tools. Deploy appropriate theory, practices, and tools for the
specification, design, implementation, and evaluation of computer-based systems.

• Professional responsibility. Recognize and be guided by the social, professional,
and ethical issues involved in the use of computer technology.

Practical capabilities and skills relating to computer science
• Design and implementation. Specify, design, and implement computer-based

systems.
• Evaluation. Evaluate systems in terms of general quality attributes and possible

tradeoffs presented within the given problem.
• Information management. Apply the principles of effective information

management, information organization, and information-retrieval skills to
information of various kinds, including text, images, sound, and video.

• Human-computer interaction. Apply the principles of human-computer interaction
to the evaluation and construction of a wide range of materials including user
interfaces, web pages, and multimedia systems.

• Risk assessment. Identify any risks or safety aspects that may be involved in the
operation of computing equipment within a given context.

• Tools. Deploy effectively the tools used for the construction and documentation of
software, with particular emphasis on understanding the whole process involved in
using computers to solve practical problems.

• Operation. Operate computing equipment and software systems effectively.

Additional transferable skills
• Communication. Make succinct presentations to a range of audiences about

technical problems and their solutions.
• Teamwork. Be able to work effectively as a member of a development team.
• Numeracy. Understand and explain the quantitative dimensions of a problem.
• Self management. Manage one’s own learning and development, including time

management and organizational skills
• Professional development. Keep abreast of current developments in the discipline to

continue one’s own professional development.

CC2001 Computer Science volume – 65 –
Final Report (December 15, 2001)

• Assign challenging and imaginative exercises that encourage student initiative.
• Present a sound framework with appropriate theory that ensures that the education is

sustainable.
• Ensure that equipment and teaching materials remain up to date.
• Make students aware of information resources and appropriate strategies for staying

current in the field.
• Encourage cooperative learning and the use of communication technologies to promote

group interaction.
• Convince students of the need for continuing professional development to promote

lifelong learning.

11.4 Benchmarking standards
In seeking to define an appropriate set of objectives for computer science graduates, the
authors of the UK benchmarking report [QAA2000] recognized that establishing a
minimum standard may discourage both faculty and students from pushing for excellence
beyond that minimum. To avoid this danger, the UK report provides benchmarking
standards to assess various levels of achievement. At the lowest level, the report
identifies a threshold standard consisting of a set of objectives that any graduate must be
able to meet. The report goes on to identify a somewhat modal standard corresponding
to the expected level of the average student.

Defining objectives for the threshold and modal standards represents a valuable
opportunity for a department engaged in undergraduate computer science education.
Setting such objectives makes it easier to understand the overall impact of the curriculum
and makes it possible to assess the effectiveness of the educational process. While these
objectives will certainly vary by the type of program and the characteristics of individual
institutions, the objectives shown in Figure 11-2, which are adapted from the UK
benchmarking report, may provide a useful model for local implementations.

Even though these benchmarking standards are defined only for the minimum and the
average, it is nevertheless important for programs in computer science to provide
opportunities for students of the highest caliber to achieve their full potential. Such
students will be creative and innovative in their application of the principles covered in
the curriculum; they will be able to contribute significantly to the analysis, design, and
development of systems which are complex, and fit for purpose; and they will be able to
exercise critical evaluation and review of both their own work and the work of others.
Inasmuch as human ingenuity and creativity have fostered the rapid development of the
discipline of computer science in the past, programs in computer science should not limit
those who will lead the development of the discipline in the future.

CC2001 Computer Science volume – 66 –
Final Report (December 15, 2001)

Figure 11-2. Standards for achievement

Threshold standard representing the minimum level
• Demonstrate a requisite understanding of the main body of knowledge and theories

of computer science.
• Understand and apply essential concepts, principles, and practices in the context of

well-defined scenarios, showing judgment in the selection and application of tools
and techniques.

• Produce work involving problem identification, analysis, design, and development of
a software system, along with appropriate documentation. The work must show
some problem-solving and evaluation skills drawing on some supporting evidence
and demonstrate a requisite understanding of and appreciation for quality.

• Demonstrate the ability to work as an individual under guidance and as a team
member.

• Identify appropriate practices within a professional, legal, and ethical framework.
• Appreciate the need for continuing professional development.
• Discuss applications based upon the body of knowledge.

Modal standard representing the average level
• Demonstrate a sound understanding of the main areas of the body of knowledge and

the theories of computer science, with an ability to exercise critical judgment across
a range of issues.

• Critically analyze and apply a range of concepts, principles, and practices of the
subject in the context of loosely specified problems, showing effective judgment in
the selection and use of tools and techniques.

• Produce work involving problem identification, analysis, design, and development of
a software system, along with appropriate documentation. The work must show a
range of problem solving and evaluation skills, draw upon supporting evidence, and
demonstrate a good understanding of the need for quality.

• Demonstrate the ability to work as an individual with minimum guidance and as
either a leader or member of a team.

• Follow appropriate practices within a professional, legal, and ethical framework.
• Identify mechanisms for continuing professional development and life-long learning.
• Explain a wide range of applications based upon the body of knowledge.

CC2001 Computer Science volume – 67 –
Final Report (December 15, 2001)

Chapter 12
Computing across the Curriculum

As we describe in Chapter 1, the CC2001 Task Force appointed a set of pedagogy focus
groups to look at the curriculum from a broad perspective that would supplement the
perspective provided by the body of knowledge. By adopting a more holistic approach,
the pedagogy focus groups sought to identify unifying themes among the different areas
that might well be missed in a strictly bottom-up, area-based assessment of the discipline.

Most of the pedagogy focus groups were charged with making recommendations
regarding specific aspects of the undergraduate computer science curriculum. The focus
group on “Computing across the curriculum” had a more inclusive charge, which
consisted in part of articulating those aspects of computer science relevant to all citizens
and academic disciplines and proposing guidelines for the role computer science can play
in helping students achieve that knowledge.

This chapter consists of the report of that group, which addresses the responsibilities of
computer science departments to the college and university community as a whole. In its
report, the pedagogy focus groups interpreted the phrase “computing across the
curriculum” to describe curricula (i.e., courses and/or course modules) targeted at
students other than computer science majors. While computer science students might
enroll in such courses, they are designed primarily to meet the needs of students outside
computing. These courses represent one of the ways that computer science is attempting
to address the issues of the expanding nature of the discipline.

This chapter is organized into three parts. In section 12.1, we discuss the important role
that general-education courses play within the academic community and argue that
developing and teaching these courses must be viewed as part of the mission of a
computer science department. In section 12.2, we outline the process of course
specification, design, implementation, and assessment. This section also includes
questions to facilitate the design process; the set of questions is not complete but can act
as a starting point for identifying essential educational goals. In section 12.3, we identify
and describe three distinct courses formats that computer science departments might
choose to offer.

12.1 Goals and rationale
Computer science departments exist within the broader context of a college or university
setting, which typically includes such divisions as social sciences, humanities, and fine
arts. Earlier chapters in this report have documented the dramatic growth of computing
and the enormous impact that computing is making on virtually every field of study.
Today, computer science is not only an area of study in its own right but an important
supporting area for many other disciplines. The urban planner constructing a
demographic database, the graphics designer utilizing CAD/CAM software, and the
economist creating computer models are all examples of people exploiting important
developments in computing to assist them with their professional work. The
pervasiveness of computing and information technology creates both an opportunity and
a responsibility to provide high-quality classroom instruction for an audience that reaches
well beyond our own students. While we must, of course, make sure that we provide a
solid educational program for our majors, we must not lose sight of the important
academic services we also provide to students in other fields.

CC2001 Computer Science volume – 68 –
Final Report (December 15, 2001)

When financial resources are tight or when there may not be enough personnel to meet
the needs within computer science itself, departments will feel pressure to focus their
limited resources on their own students by reducing the offerings to students outside the
department. We believe that such a policy—while understandable from the departmental
perspective—is inappropriate for the university as a whole. Given the impact of
computing on all aspects of society, every university has a responsibility to offer courses
in computer science for all students. Because such courses are most effectively taught by
computer science departments, universities must make sure that those departments have
the resources to (1) educate students in the discipline of computer science, and (2) help
students from other disciplines understand and use computing and information
technology. Both missions are vitally important.

12.2 Process questions
A useful model for the course development process is, appropriately enough, the software
development process. As with software, the course development process can be divided
into four phases: specification, design, implementation, and assessment. We elaborate on
each of the phases in the sections that follow.

12.2.1 Course specification
The design of a general-education course entails asking and answering a number of
important questions. But to whom should these questions be addressed? Who should
have the primary responsibility for specifying the goals and content of a general-
education course in computer science? While computing faculty must, of course, be fully
involved in helping to formulate specifications, we must be careful not to dictate them. It
is important that an in-depth discussion of course goals occur both inside and outside
computer science to ensure that course design is driven by curricular needs and not
simply by a desire to teach a certain type of class. In the past, mathematics departments
have been criticized for creating introductory courses that focus almost exclusively on
pure mathematics, even though many students are interested in and need more applied
topics. Computer science should not repeat this mistake. While we should offer
assistance during course design, we must also listen carefully to the needs of students and
faculty from other departments and be responsive to these needs.

There are four possible goals of a general-education course in computing:

1. To satisfy general student interest in learning more about computing
2. To meet institutional distribution requirements in the physical and/or mathematical

sciences
3. To give students knowledge of and experience with the effective use of computing

technology in their own discipline
4. To provide a broader understanding of information technology required for effective

participation in society

Such courses may be taught to a wide audience of students from throughout the college or
to a narrow group of students for a more specific purpose. For example, many
institutions have a general education requirement relating to computer literacy. On the
other hand, a computer science department might teach a computer graphics course only
for art students. It is relatively easy to agree that when a course is designed for a specific
subset of students the faculty in the targeted discipline must provide significant input
about the concepts and skills to be covered. We believe that the same is true even when a
course is designed for a much broader range of students.

CC2001 Computer Science volume – 69 –
Final Report (December 15, 2001)

The first step in developing new general-education courses is identifying a curricular
need that is not currently being met. This may be done either reactively or proactively.
Computing departments should certainly respond to requests from faculty or industry
representatives for a new course that could be quite useful to their students or employees.
Alternately, computer science can approach other departments with a proposal for a new
course that covers material not included in the existing curriculum. Regardless of how a
need is identified, if there is interest expressed by all parties the next step is to identify
the target audience and seek input from everyone with a stake in the course’s content and
structure. A number of questions are appropriate to pose at this time:

• What need will this course meet that is not currently being met by existing courses in
the curriculum?

• Who is the target audience for this course? Which departments and programs within
the university are likely stakeholders in the course? What type of student will enroll?
Do we have some way to measure the interest and demand for such a course? Will the
students we are trying to reach have room for this new course within their existing
program?

• How will teaching the course affect our own department? Will it have an adverse
impact on our ability to teach computer science majors?

• How will credit be awarded? Will the course count for general education or
distribution credit, major or minor credit in some program(s), or university elective?
Will the course, instead, be offered only as training or continuing education credit?

• Who will teach the course? Will it be team-taught? Who receives credit for developing
and teaching it? Do we have sufficient faculty to teach this course even when people
are on leave? If not, how can we retrain existing faculty or hire additional faculty with
the necessary skills?

In addition to reviewing the responses to these, and similar, questions, departments
should carefully read and examine the National Research Council report Being Fluent
with Information Technology [CSTB99]. This report addresses the fundamental goals
and purposes of general-education courses in computing, and it lays an excellent
foundation for understanding the issue of computing across the curriculum. This report,
along with the responses of client departments to the above questions, will provide the
input needed for a detailed course design.

12.2.2 Course design
Once a curricular need has been clearly identified and all departments support the
development of a course to meet this need, the next step is course design. Course design
involves identifying explicit educational goals and objectives by specifying the technical
skills and concepts to be included in the course syllabus and the educational outcomes
that we want our students to have. To do so, it is important to pose these basic questions:

• What specific computing skills should be included in the course, and are these skills
important and current to the field of study? What level of expertise in these skills do
we want our students to achieve?

• What fundamental and enduring computing concepts should be included in the course,
and how do these concepts relate to and support the computing skills being taught?

• What, if any, social and ethical issues should be included in the course to complement
the technical material being presented?

As in the discussion of course specification in the preceding section, we recommend that
departments use the National Research Council’s (NRC) Fluency Report [CSTB99] as a

CC2001 Computer Science volume – 70 –
Final Report (December 15, 2001)

guide. This report identifies three distinct types of knowledge that are appropriate to
consider for inclusion in a general-education course:

• Computer-specific skills. This class of knowledge refers to the ability to use
contemporary computing applications and includes such skills as word processing,
browsing the World Wide Web, and MatLab programming. These skills need to be
clearly identified and included during course design. However, as they may be short-
lived, the specific set of skills needs to be periodically re-examined and updated if
necessary.

• Fundamental and enduring computing concepts. As mentioned in the NRC Fluency
Report, “Concepts explain the how and why of information technology, and they give
insight into its opportunities and limitations. Concepts are the raw material for
understanding new information technology as it evolves.” Enduring computing
concepts includes ideas that transcend any specific vendor, package, or skill set.
Examples might include algorithms, complexity, machine organization, information
representations, modeling, and abstraction. Understanding these fundamental concepts
is essential to the effective use of computer-specific skills. While skills are fleeting,
fundamental concepts are enduring and provide long-lasting benefits to students,
critically important in a rapidly changing discipline.

• General intellectual capabilities. This class of knowledge consists of broad
intellectual skills important in virtually every area of study, not simply computer
science. These skills allow students to apply information technology to complex tasks
in effective and useful ways. Examples include problem solving, debugging, logical
reasoning, and effective oral and written communication skills. These capabilities are
beneficial to all students and help to develop and improve a student’s overall
intellectual ability.

The NRC report gives specific examples of all three types of knowledge, and it stresses
that a well designed class must include ideas from all three. A course that focuses only
on skills acquisition may be useful in the short-run but will quickly become dated and of
little benefit to those who take it. Similarly, a class that addresses only abstract ideas and
general concepts may not provide the skills that students needs to make effective use of
computing technology. The NRC report emphasizes that effective course design involves
the appropriate balance of material among these three types of knowledge.

12.2.3 Course implementation
Once the general course content and goals have been established, developers can turn
their attention to implementation-specific details about how the proposed course will be
structured by asking themselves the following questions:

• Should the class be taught using a large lecture format or small discussion sections?
Should it include a formal laboratory? Informal laboratory? No laboratory?

• What learning activities are most useful for developing specific technical skills?
Should there be few large projects? More smaller projects? Team assignments? What
about written papers and/or oral presentations to improve communication skills?

• How can we best evaluate students’ learning? What types of projects and/or
examinations will be most effective at measuring student success in meeting course
goals?

• What instructor expertise is necessary for teaching the course? Do we have such
expertise in one individual or would it be better to use a team-teaching approach?

• Do we have adequate educational resources (e.g., computers, laboratories) to offer this
course?

CC2001 Computer Science volume – 71 –
Final Report (December 15, 2001)

• Will there be sufficient student interest to generate adequate enrollment? How often
should the course be offered? How many credits should the course be and how many
times a week will it meet?

The answers to these and other implementation questions will often be determined not by
lofty academic goals but by local concerns and resource constraints that are beyond the
scope of this report. These factors could include such issues as enrollment pressures,
financial considerations, student populations, college distribution requirements, faculty
interests, space limitations, and the working relationship between computer science and
other departments. But, regardless of how they may be answered, a department should be
able, based on responses to these questions, to implement a general-education course that
goes a long way toward meeting the desired goals.

12.2.4 Course assessment
Following implementation, a department is ready to offer the new general-education
course to the college community. This leaves only the final step in the course
development process—assessment. After the course has been offered once or twice, its
design and implementation should be carefully reviewed and evaluated. The data needed
for assessment can be collected in a number of ways: written student evaluations, in-
class observations, and personal interviews with students and faculty from the client
departments. Once the course has been taught for a few years it is also a good idea to
interview graduates regarding the value of this course to their professional work
environment.

Some of the questions that should be asked during course assessment include the
following:

• Does this course meet its stated goals? If not, should we redesign it or simply
eliminate it from the program and consider an alternative approach?

• Has any important topic been omitted? Is anything unnecessarily included?
• Based on examination results and course evaluations, do students completing the

course possess the desired skills, knowledge, and capabilities?
• Is the client department satisfied with our course offering? If not, what can we do to

improve their satisfaction?

The design and implementation of a general-education course is not a one-time process
but rather a “work in progress” that must be updated and modified as we gain additional
experience. Course design must include regular reviews and redesign, just as in the
software development process. Such reviews are especially important in light of the
rapidly changing nature of our field.

12.3 Course models
We have identified three types of courses that can be offered by a computer science
department: general fluency, area-wide, and single discipline. These three approaches are
described in the following sections.

12.3.1 General fluency
These courses address skills and concepts that are appropriate for all students at an
institution, regardless of their specific field of study. General fluency courses are not
concerned with providing specific computer-related skills to a particular discipline.
Instead, they are meant to satisfy general student interests in computing, to meet college

CC2001 Computer Science volume – 72 –
Final Report (December 15, 2001)

distribution requirements, and to help produce more informed citizens with respect to
information technology.

One popular general fluency course involves a broad overview of the discipline of
computer science, much like the breadth-first course CS100B described in Appendix B.
Another possibility is a broad-based introduction to networking and communications—
including both conceptual and technical issues as well as discussions of the applications
and uses of networks, and the positive and negative impacts of communications
technology on society. Another example might be a course entitled “Computing and
Ethics” that examines the social, legal, moral, and ethical issues of computing—certainly
something of importance to virtually all students.

12.3.2 Area-wide or multidisciplinary courses
Area-wide courses serve several departments that share a common need for particular
computing skills and concepts. They share the characteristic that most, if not all,
prerequisite material comes from outside computing. Examples probably best illustrate
this category.

• A computational science course offered for science majors
• A computational modeling course for economics, finance, management, and business

majors
• An artificial intelligence course for cognitive psychology, linguistics, and philosophy

majors
• A computer graphics course for art and graphic design students and other fine arts

majors

The NRC Fluency Report also includes a number of examples of this type of area-wide
course. For example, the report describes a class on the applications of information
technology to social research, including computerized databases, Web searching,
sampling, data analysis, and statistical software. Such a course has obvious appeal to
many of the social sciences including sociology, anthropology, and political science.

Computer science may work with other departments to identify this type of specialized
need, or the impetus may come from one or more of the affected departments. Computer
science may be asked to teach such a course because only its faculty have the necessary
technical expertise. Alternately, it may be team taught using one faculty member from
computer science and another from a client department.

At schools with limited enrollments, such as private liberal arts colleges and smaller state
colleges, there is a better chance of success with a general-education course that is
attractive to many departments rather than just one. For example, a course in
Computational Physics might be difficult to justify at a small institution with few physics
majors. However, an area-wide course entitled something like Computational Science
would not only appeal to physicists but biologists, chemists, geologists, and economists
as well, significantly increasing the likelihood of its success.

12.3.3 Single-discipline courses
These courses are narrower in focus than those discussed in the two preceding sections,
and they are generally offered to a homogeneous group of students majoring in a single
department. For example, many of us are familiar with a course in discrete mathematics
offered by mathematics essentially for computer science. This type of course would fit
into the single-discipline category.

CC2001 Computer Science volume – 73 –
Final Report (December 15, 2001)

Examples of such courses are the Computational Physics course described in the
preceding section or a course in Computational Biology. The NRC Fluency Report
describes a course offered to economics students that uses spreadsheets and simulation
packages to create models of economic problems or historical events to demonstrate the
factors contributing to the outcome. In each case, such a course could be offered jointly
by computer science and the relevant department to ensure that both the computer science
aspects and the domain-specific aspects received the appropriate level of coverage.
While much of the technical material in such a class comes from the department
supplying the domain expertise, it is important to remember that the course remains a
general-education class, and therefore should include fundamental and enduring computer
concepts, in addition to specific computational skills.

12.4 Summary
In this chapter, we have argued the fundamental importance of well-crafted general-
education courses; provided guidelines for the design, implementation, and assessment of
these service courses; and, finally, presented examples of three distinct types of courses
that departments may want to consider. When designing and developing these courses,
computer science faculty must always be mindful of the needs of the intended audience
and carefully design a course to meet those needs. We must not do this in a vacuum but,
instead, seek out the advice of colleagues outside our department when developing the
goals, content, learning activities, and outcomes of these courses.

Most nonmajors will take only a single course in computer science. Thus, it is important
that we carefully design these courses to make them as useful as possible. We must
present both computer-specific skills as well as broad fundamental concepts that together
allows students to develop a rich, full, and long-lasting understanding of the material.

CC2001 Computer Science volume – 74 –
Final Report (December 15, 2001)

Chapter 13
Institutional Challenges

This report is designed primarily as a resource for colleges and universities seeking to
develop or improve undergraduate programs in computer science. To this end, the
appendices to this report offer an extensive analysis of the structure and scope of
computer science knowledge along with a detailed set of course descriptions that
represent viable approaches to the undergraduate curriculum. Implementing a curriculum
successfully, however, requires each institution to consider broad strategic and tactical
issues that transcend such details. The purpose of this chapter is to enumerate some of
these issues and illustrate how addressing those concerns affects curriculum design.

13.1 The need for local adaptation
The task of designing a computer science curriculum is a difficult one in part because so
much depends on the characteristics of the individual institution. Even if every
institution could agree on a common set of knowledge and skills for undergraduate
education, there would nonetheless be many additional factors that would influence
curriculum design. These factors include the following:

• The type of institution and the expectations for its degree programs. As we discuss in
section 9.3, institutions vary enormously in the structure and scope of undergraduate
degree requirements. The number of courses that institutions require of computer
science majors can vary by almost a factor of two depending on the institution type. A
curriculum that works well at a liberal-arts college in the United States may be
completely inappropriate for a research university elsewhere in the world.

• The range of postgraduate options that students pursue. Institutions whose primary
purpose is to prepare a skilled workforce for the information technology profession
presumably have different curricular goals than those seeking to prepare research
students for graduate study. Individual schools must ensure that the curriculum they
offer gives students the necessary preparation for their eventual academic and career
paths.

• The preparation and background of entering students. Students at different
institutions—and often within a single institution—vary substantially in their level of
preparation. As a result, computer science departments often need to tailor their
introductory offerings so that they meet the needs of their students.

• The faculty resources available to an institution. The number of faculty in a computer
science department may vary from as little as three or four at a small college or a
private liberal-arts college to 40 or 50 at a large research university. The flexibility
and options available in these smaller programs is obviously a great deal less.
Therefore, faculty in smaller departments need to set priorities for how they will use
their limited resources.

• The interests and expertise of the faculty. Individual curricula often vary according to
the specific interests and knowledge base of the department, particularly at smaller
institutions where expertise is concentrated in particular areas.

Creating a workable curriculum requires finding an appropriate balance among these
factors, which will require different choices at every institution. There can be no single
curriculum that works for everyone. Every college and university will need to consider
the various models proposed in this document and design an implementation that meets
the need of that environment.

CC2001 Computer Science volume – 75 –
Final Report (December 15, 2001)

13.2 Principles for curriculum design
Despite the fact that curriculum design requires significant local adaptation, curriculum
designers can draw on several key principles to help in the decision-making process.
These principles include the following:

• The curriculum must reflect the integrity and character of computer science as an
independent discipline. Computer science is a discipline in it own right. That
discipline, moreover, is characterized by a combination of theory, practice, knowledge,
and skills. Any computer science curriculum should therefore ensure that practice is
guided both by theory and a spirit of professionalism.

• The curriculum must respond to rapid technical change and encourage students to do
the same. Computer science is a vibrant and fast-changing discipline. As we discuss
in Chapter 3, the enormous pace of change means that computer science programs
must update their curricula on a regular basis. Equally importantly, the curriculum
must teach students to respond to change as well. Computer science graduates must
keep up to date with modern developments and should indeed be excited by the
prospect of doing so. One of the most important goals of a computer science program
should be to produce students who are life-long learners.

• Curriculum design must be guided by the outcomes you hope to achieve. Throughout
the process of defining a computer science curriculum, it is essential to consider the
goals of the program and the specific capabilities students must have at its conclusion.
These goals—and the associated techniques for determining whether the goals are
met—provide the foundation for the entire curriculum. In the United States and
elsewhere, accreditation bodies have focused increasing attention on the definition of
goals and assessment strategies. Programs that seek to defend their effectiveness must
be able to demonstrate that their curricula in fact accomplish what they intend.

• The curriculum as a whole should maintain a consistent ethos that promotes
innovation, creativity, and professionalism. Students respond best when they
understand what it is expected of them. It is unfair to students to encourage particular
modes of behavior in early courses, only to discourage that same behavior in later
courses. Throughout the entire curriculum, students should be encouraged to use their
initiative and imagination to go beyond the minimal requirements. At the same time,
students must be encouraged from the very beginning to maintain a professional and
responsible attitude toward their work.

• Ensure that the curriculum is accessible to a wide range of students. All too often,
computer science programs attract a homogeneous population that includes relatively
few women or students whose ethic, social, or economic background are not those of
the dominant culture. Although many of the factors that lead to this imbalance lie
outside the university, every institution should seek to ensure greater diversity, both by
eliminating bias in the curriculum and by actively encouraging a broader group of
students to take part.

• The curriculum must provide students with a capstone experience that gives them a
chance to apply their skills and knowledge to solve a challenging problem. The
culmination of an undergraduate computer science degree should include a final-year
project that requires students to use a range of practices and techniques in solving a
substantial problem. There are aspects of the computer science discipline that cannot
be presented adequately in the formal classroom setting. These skills can be learned
only in the framework of an independent capstone experience.

CC2001 Computer Science volume – 76 –
Final Report (December 15, 2001)

13.3 The need for adequate computing resources
Higher education is, of course, always subject to resource limitations of various kinds. At
some level, all educational programs must take costs into account and cannot do
everything that they might wish to do if they were somehow freed from economic
constraints. In many respects, those limitations are no more intense in computer science
than they are in other academic fields. It is, for example, no longer the case that adequate
computing hardware lies outside the reach of academic institutions, as it did in the early
days of the discipline. Over the last twenty years, computers have become commodity
items, which makes the hardware far more affordable.

At the same time, it is essential for institutions to recognize that computing costs are real.
These costs, moreover, are by no means limited to the hardware. Software also
represents a substantial fraction of the overall cost of computing, particularly if one
includes the development costs of courseware. Providing adequate support staff to
maintain the computing facilities represents another large expense. To be successful,
computer science programs must receive adequate funding to support the computing
needs of both faculty and students.

Over the last few years, computer science has become—like biology, chemistry, and
physics—a laboratory science with formal, scheduled laboratories included in many of its
courses. The laboratory component leads to an increased need for staff to assist in both
the development of materials and the teaching of laboratory sections. This development
will add to the academic support costs of a high-quality computer science program.

To a certain extent, the costs of courseware and other academic resources can be reduced
by taking advantage of the tremendous range of resources available from the World-Wide
Web. A list of the major existing courseware repositories is maintained on the ACM
Special Interest Group in Computer Science Education (SIGCSE) home page at
http://www.acm.org/sigcse/.

13.4 Attracting and retaining faculty
One of the most daunting problems that computer science departments face is the
problem of attracting faculty. In most academic fields, the number of faculty applicants
is much larger than the number of available positions. In computer science, there are
often more advertised positions than candidates [Myers98, Roberts99], although there are
some signs that the crisis is easing with falling student enrollments in the wake of the
economic downturn. The shortage of faculty applicants, coupled with the fact that
computer scientists command high salaries outside academia, makes it difficult to attract
and retain faculty.

To mitigate the effects of the faculty shortage, we recommend that institutions adopt the
following strategies:

• Adopt an aggressive plan for faculty recruitment. Scarcity is in itself no reason to
abandon the search; the shortage of candidates simply means that computer science
departments need to look harder. Being successful is usually a matter of initiative and
persistence. Departments must start the recruiting process very early and should
consider reaching out to a wide range of potential applicants, including overseas
students and people currently working in industry.

• Create academic positions that focus on teaching. As in most disciplines, faculty
positions in computer science typically require a Ph.D. and involve both research and
teaching. If there were a sufficient pool of candidates with the right credentials and
skills, insisting on these qualification would cause no problem. Given the shortage of

CC2001 Computer Science volume – 77 –
Final Report (December 15, 2001)

faculty candidates, it is not clear whether computer science departments can afford
such selectivity. It is not necessary for every institution to maintain a research
program in computer science. At the same time, it is hard to imagine that any
university today could get away without offering courses in this area. Opening faculty
positions to those who enjoy teaching but are not drawn to academic research increases
the size of the available pool.

• Make sure that faculty receive the support they need to stay in academia. Studies
undertaken by the National Science Foundation in the 1980s found that faculty
members who left academia for industry typically did not cite economics as their
primary motivation [Curtis83]. Instead, they identified a range of concerns about the
academic work environment—huge class sizes, heavy teaching loads, inadequate
research support, the uncertainty of tenure, and bureaucratic hassles—that the NSF
study refers to collectively as “institutional disincentives.” As enrollments in
computer science courses rise, it is critical for institutions to ensure that faculty
workloads remain manageable.

• Get undergraduates involved as course assistants. The crisis in computer science
education arises from the fact that there are too few teachers to serve the needs of too
many undergraduates. One of the best ways to meet the rising student demand is to get
those undergraduates involved in the teaching process. Using undergraduates as
course assistants not only helps alleviate the teaching shortfall but also provides a
valuable educational experience to the student assistants [Roberts95].

13.5 Conclusion
There is no single formula for success in designing a computer science curriculum.
Although we believe that the recommendations of this report and the specific strategic
suggestions in this chapter will prove useful to a wide variety of institutions, every
computer science program must adapt those recommendations and strategies to match the
characteristics of the particular institution. It is, moreover, important to evaluate and
modify curricular programs on a regular basis to keep up with the rapid changes in the
field. The computer science curricula in place today are the product of many years of
experimentation and refinement by computer science educators in their own institutions.
The curricula of the future will depend just as much on the creativity that follows in the
wake of this report to build even better computer science programs for undergraduates
throughout the world.

CC2001 Computer Science volume – 78 –
Final Report (December 15, 2001)

Acknowledgments

Acknowledgments
Many people have contributed to the CC2001 project since its inception at the end of
1998. The following individuals have served on at least one of the focus groups: Ishfaq
Ahmad, Robert Aiken, Anne Applin, Richard H. Austing, Scott Badman, Donald J.
Bagert, Bruce Barnes, Mordechai (Moti) Ben-Ari, Julia Benson, Russell C. Bjork, Kevin
W. Bowyer, Kim Bruce, Amy S. Bruckman, Bob Campbell, James Caristi, Doris Carver,
Carl K. Chang, Morris Chang, Yiming Chen, Ashraful Chowdhury, Alan Clements, C.
Fay Cover, Thad Crews, George T. Crocker, James H. Cross II, Steve Cunningham, Nell
Dale, Andrea Danyluk, Gordon Davies, Susan Dean, Thomas G. Dietterich, John P.
Dougherty, Sarah Douglas, J. Philip East, Dick Eckhouse, Gerald Engel, Edward
Feigenbaum, Sue Fitzgerald, Ken Ford, Edward A. Fox, Josephine Freedman, Jose
Galaviz, Dick Gayler, Benjamin Goldberg, Dina Golden, Saul Greenberg, Mark Guzdial,
Elizabeth Hawthorne, Pat Hayes, Chris Haynes, Xudong He, Jim Hendler, Tom Hilburn,
Wayne Horn, Cay Horstmann, Joseph Hummel, Phillip Hutto, Michel Israel, Robert
Jacob, Anil Jain, Carol Janik, Barbara Jennings, Ricardo Jiménez-Peris, Keith Jolly, Rhys
Price Jones, Ioannis Kakadiaris, Willis King, Karl Klee, Timothy Klingler, Peter Knoke,
Richard E. Korf, Norbert Kubilus, Amruth Kumar, Francis Lau, Gary Leavens, Ernst
Leiss, James Lin, Cheng-Wen Liu, Ming T. (Mike) Liu, Tim Long, Philip Machanick,
Raghu Machiraj, Raghu Machiraju, John Mallozzi, Bill Marion, Marta Patiño Martínez,
Bruce R. Maxim, W. Michael McCracken, Chris McDonald, Andrew McGettrick, Susan
Mengel, Dan Myers, John Mitchell, Michael Murphy, Walid Najjar, Thomas L. Naps,
Patricia Nettnin, Gary Nutt, Yale Patt, Holly Patterson-McNeill, Richard E. Pattis, T. S.
Pennington, Judy Porter, Jenny Preece, Anne-Louise Radimsky, Brad Richards, Eric
Roberts, Ingrid Russell, Sartaj Sahni, Ahmed Sameh, Carolyn Schauble, G. Michael
Schneider, Henning Schulzrinne, Russ Shackelford, Alfred Shin, Charles Shipley, Ben
Shneiderman, Shai Simonson, Robert Sloan, Carl Smith, Milan Sonka, Sylvia Sorkin,
Pradip Srimani, Lynn Andrea Stein, George Stockman, Devika Subramanian, Bobby
Thrash, D. Singh Tomer, Frank Tong, Marilyn Mantei Tremaine, Alan Underwood, Ron
Vetter, Henry Walker, David Waltz, Wenping Wang, Yun Wang, Tony Wasserman,
Laurie Honour Werth, Curt M. White, Ed Wilkens, Barry Wilkinson, Terry Winograd,
Ursula Wolz, and Anita Wright.

We also want to thank the many people who attended the various CC2001 workshops
over the last two years for all the feedback that they provided to the steering committee.
The input we received during those meetings has had a profound effect on the structure
and scope of this report.

Finally, we are extremely grateful to the Association for Computing Machinery, the
Computer Society of the Institute for Electrical and Electronic Engineers, and the
National Science Foundation for supporting this effort.

CC2001 Computer Science volume – 79 –
Final Report (December 15, 2001)

Bibliography

[Abelson85] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and
Interpretation of Computer Programs. Cambridge, MA: MIT Press, 1985.

[ABET2000] Accreditation Board for Engineering and Technology. Accreditation policy
and procedure manual. Baltimore, MD: ABET, Inc., November 2000.
http://www.abet.org/images/policies.pdf.

[ACM65] ACM Curriculum Committee on Computer Science. An undergraduate
program in computer science—preliminary recommendations. Communications of
the ACM, 8(9):543-552, September 1965.

[ACM68] ACM Curriculum Committee on Computer Science. Curriculum ’68:
Recommendations for the undergraduate program in computer science.
Communications of the ACM, 11(3):151-197, March 1968.

[ACM78] ACM Curriculum Committee on Computer Science. Curriculum ’78:
Recommendations for the undergraduate program in computer science.
Communications of the ACM, 22(3):147-166, March 1979.

[ACM99] ACM Two-Year College Education Committee. Guidelines for associate-
degree and certificate programs to support computing in a networked environment.
New York: The Association for Computing Machinery, September 1999.

[ACM2001] Association for Computing Machinery. ACM code of ethics and
professional conduct. New York: The Association for Computing Machinery, May
2001. http://www.acm.org/constitution/code.html.

[AP2000] Advanced Placement Program. Introduction of Java in 2003-2004. The
College Board, December 20, 2000. http://www.collegeboard.org/ap/
computer-science.

[BCS89a] British Computer Society and The Institution of Electrical Engineers.
Undergraduate curricula for software engineers. London, June 1989.

[BCS89b] British Computer Society and The Institution of Electrical Engineers.
Software in safety-related systems. London, October 1989.

[Beidler85] John Beidler, Richard Austing, and Lillian Cassel. Computing programs in
small colleges. Communications of the ACM, 28(6):605-611, June 1985.

[Bennett86] W. Bennett. A position paper on guidelines for electrical and computer
engineering education. IEEE Transactions in Education, E-29(3):175-177, August
1986.

[Bott91] Frank Bott, Allison Coleman, Jack Eaton, and Diane Rowland. Professional
issues in software engineering. London: Pitman, 1991.

[Carnegie92] Carnegie Commission on Science, Technology, and Government. Enabling
the future: Linking science and technology to societal goals. New York: Carnegie
Commission, September 1992.

[COSINE67] COSINE Committee. Computer science in electrical engineering.
Washington, DC: Commission on Engineering Education, September 1967.

[CSAB86] Computing Sciences Accreditation Board. Defining the computing sciences
professions. October 1986. http://www.csab.org/comp_sci_profession.html.

[CSAB2000] Computing Sciences Accreditation Board. Criteria for accrediting
programs in computer science in the United States. Version 1.0, January 2000.
http://www.csab.org/criteria2k_v10.html.

CC2001 Computer Science volume – 80 –
Final Report (December 15, 2001)

[CSTB94] Computing Science and Telecommunications Board. Realizing the
information future. Washington DC: National Academy Press, 1994.

[CSTB99] Computing Science and Telecommunications Board. Being fluent with
information technology. Washington DC: National Academy Press, 1999.

[Curtis83] Kent K. Curtis. Computer manpower: Is there a crisis? Washington DC:
National Science Foundation, 1983. http://www.acm.org/sigcse/papers/
curtis83/.

[Davis97] Gordon B. Davis, John T. Gorgone, J. Daniel Couger, David L. Feinstein, and
Herbert E. Longnecker, Jr. IS’97 model curriculum and guidelines for
undergraduate degree programs in information systems. Association of Information
Technology Professionals, 1997. http://webfoot.csom.umn.edu/faculty/
gdavis/curcomre.pdf.

[Denning89] Peter J. Denning, Douglas E. Comer, David Gries, Michael C. Mulder,
Allen B. Tucker, A. Joe Turner, and Paul R. Young. Computing as a discipline.
Communications of the ACM, 32(1):9-23, January 1989.

[Denning98] Peter J. Denning. Computing the profession. Educom Review, November
1998.

[Denning99] Peter J. Denning. Our seed corn is growing in the commons. Information
Impacts Magazine, March 1999. http://www.cisp.org/imp/march_99/denning/
03_99denning.htm.

[EAB83] Educational Activities Board. The 1983 model program in computer science
and engineering. Technical Report 932, Computer Society of the IEEE, December
1983.

[EAB86] Educational Activities Board. Design education in computer science and
engineering. Technical Report 971, Computer Society of the IEEE, October 1986.

[EC77] Education Committee of the IEEE Computer Society. A curriculum in computer
science and engineering. Publication EHO119-8, Computer Society of the IEEE,
January 1977.

[Gibbs86] Norman E. Gibbs and Allen B. Tucker. Model curriculum for a liberal arts
degree in computer science. Communications of the ACM, 29(3):202-210, March
1986.

[Gorgone2000] John T. Gorgone, Paul Gray, David L. Feinstein, George M. Kasper,
Jerry N. Luftman, Edward A. Stohr, Joseph S. Valacich, and Rolf T. Wigand. MSIS
2000: Model curriculum and guidelines for graduate degree programs in
information systems. Association for Computing Machinery and Association for
Information Systems, January 2000. http://cis.bentley.edu/ISA/pages/
documents/msis2000jan00.pdf.

[IEEE2001] Institute for Electrical and Electronic Engineers. IEEE code of ethics.
Piscataway, NJ: IEEE, May 2001. http://www.ieee.org/about/whatis/
code.html.

[Kelemen99] Charles F. Kelemen (editor), Owen Astrachan, Doug Baldwin, Kim Bruce,
Peter Henderson, Dale Skrien, Allen Tucker, and Charles Ban Loan. Computer
Science Report to the CUPM Curriculum Foundations Workshop in Physics and
Computer Science. Report from a workshop at Bowdoin College, October 28-31,
1999.

[Koffman84] Elliot P. Koffman, Philip L. Miller, and Caroline E. Wardle.
Recommended curriculum for CS1: 1984 a report of the ACM curriculum task force
for CS1. Communications of the ACM, 27(10):998-1001, October 1984.

CC2001 Computer Science volume – 81 –
Final Report (December 15, 2001)

[Koffman85] Elliot P. Koffman, David Stemple, and Caroline E. Wardle. Recommended
curriculum for CS2, 1984: A report of the ACM curriculum task force for CS2.
Communications of the ACM, 28(8):815-818, August 1985.

[Lee98] Edward A. Lee and David G. Messerschmitt. Engineering and education for the
future. IEEE Computer, 77-85, January 1998.

[Lidtke99] Doris K. Lidtke, Gordon E. Stokes, Jimmie Haines, and Michael C. Mulder.
ISCC ’99: An information systems-centric curriculum ’99, July 1999.
http://www.iscc.unomaha.edu.

[Martin96] C. Dianne Martin, Chuck Huff, Donald Gotterbarn, Keith Miller.
Implementing a tenth strand in the CS curriculum. Communications of the ACM,
39(12):75-84, December 1996.

[Mulder75] Michael C. Mulder. Model curricula for four-year computer science and
engineering programs: Bridging the tar pit. Computer, 8(12):28-33, December
1975.

[Mulder84] Michael C. Mulder and John Dalphin. Computer science program
requirements and accreditation—an interim report of the ACM/IEEE Computer
Society joint task force. Communications of the ACM, 27(4):330-335, April 1984.

[Mulder98] Fred Mulder and Tom van Weert. Informatics in higher education: Views on
informatics and noninformatics curricula. Proceedings of the IFIP/WG3.2 Working
Conference on Informatics (computer science) as a discipline and in other
disciplines: What is in common? London: Chapman and Hall, 1998.

[Myers98] J. Paul Myers, Jr. and Henry M. Walker. The state of academic hiring in
computer science: An interim review. SIGCSE Bulletin, 30(4):32a-35a, December
1998.

[NACE2001] National Association of Colleges and Employers. Job outlook ’01 (online
version). http://www.jobweb.com

[Neumann95] Peter G. Neumann. Computer related risks. New York: ACM Press, 1995.
[NSF96] National Science Foundation Advisory Committee. Shaping the future: New

expectations for undergraduate education in science, mathematics, engineering, and
technology. Washington DC: National Science Foundation, 1996.

[NTIA99] National Telecommunications and Information Administration. Falling
through the Net: Defining the digital divide. Washington, DC: Department of
Commerce, November 1999.

[Nunamaker82] Jay F. Nunamaker, Jr., J. Daniel Couger, Gordon B. Davis. Information
systems curriculum recommendations for the 80s: Undergraduate and graduate
programs. Communications of the ACM, 25(11):781-805, November 1982.

[OTA88] Office of Technology Assessment. Educating scientists and engineers: Grade
school to grad school. OTA-SET-377. Washington, DC: U.S. Government Printing
Office, June 1988.

[Paulk95] Mark Paulk, Bill Curtis, Mary Beth Chrissis, and Charles Weber. The
capability maturity model: Guidelines for improving the software process. Reading,
MA: Addison-Wesley, 1995.

[QAA2000] Quality Assurance Agency for Higher Education. A report on benchmark
levels for computing. Gloucester, England: Southgate House, 2000.

[Ralston80] Anthony Ralston and Mary Shaw. Curriculum ’78—Is computer science
really that unmathematical. Communications of the ACM (23)2:67-70, February
1980.

CC2001 Computer Science volume – 82 –
Final Report (December 15, 2001)

[Roberts95] Eric Roberts, John Lilly, and Bryan Rollins. Using undergraduates as
teaching assistants in introductory programming courses: An update on the Stanford
experience. SIGCSE Bulletin (27)1:48-52, March 1995.

[Roberts99] Eric Roberts. Conserving the seed corn: Reflections on the academic hiring
crisis. SIGCSE Bulletin (31)4:4-9, December 1999.

[SAC67] President’s Science Advisory Commission. Computers in higher education.
Washington DC: The White House, February 1967.

[SEEPP98] IEEE-CS/ACM Joint Task Force on Software Engineering Ethics and
Professional Practices (SEEPP). Software engineering code of ethics and
professional practice (Version 5.2). http://www.acm.org/serving/se/code.htm.

[Shaw85] Mary Shaw. The Carnegie-Mellon curriculum for undergraduate computer
science. New York: Springer-Verlag, 1985.

[Shaw91] Mary Shaw and James E Tomayko. Models for undergraduate courses in
software engineering. Pittsburgh: Software Engineering Institute, Carnegie Mellon
University, January 1991.

[Shaw92] Mary Shaw. We can teach software better. Computing Research News 4(4):2-
12, September 1992.

[SIGCHI92] Special Interest Group on Computer-Human Interaction. ACM SIGCHI
Curricula for Human-Computer Interaction. New York: Association for Computing
Machinery, 1992.

[SWEBOK01] Software Engineering Coordinating Committee. Guide to the Software
Engineering Body of Knowledge (SWEBOK). Stone Man Version 0.95. A Project
of the IEEE Computer Society, May 2001. http://www.swebok.org/stoneman/
version095.html/.

[Tucker91] Allen B. Tucker, Bruce H. Barnes, Robert M. Aiken, Keith Barker, Kim B.
Bruce, J. Thomas Cain, Susan E. Conry, Gerald L. Engel, Richard G. Epstein, Doris
K. Lidtke, Michael C. Mulder, Jean B. Rogers, Eugene H. Spafford, and A. Joe
Turner. Computing Curricula ’91. Association for Computing Machinery and the
Computer Society of the Institute of Electrical and Electronics Engineers, 1991.

[Walker96] Henry M. Walker and G. Michael Schneider. A revised model curriculum for
a liberal arts degree in computer science. Communications of the ACM, 39(12):85-
95, December 1996.

[Zadeh68] Lofti A. Zadeh. Computer science as a discipline. Journal of Engineering
Education, 58(8):913-916, April 1968.

CC2001 Computer Science volume – 83 –
Final Report (December 15, 2001)

Appendix A
CS Body of Knowledge

This appendix to the Computing Curricula 2001 report defines the knowledge domain
that is likely to be taught in an undergraduate curriculum in computer science. The
underlying rationale for this categorization scheme and additional details about its
history, structure, and application are included in the full task force report. Because we
expect the appendices to have wider circulation than the full report, the task force feels it
is important to include in each appendix a summary of the fundamental concepts that are
necessary to understand the recommendations. The most important concepts are outlined
in the sections that follow.

Structure of the body of knowledge
The CS body of knowledge is organized hierarchically into three levels. The highest
level of the hierarchy is the area, which represents a particular disciplinary subfield.
Each area is identified by a two-letter abbreviation, such as OS for operating systems or
PL for programming languages. The areas are broken down into smaller divisions called
units, which represent individual thematic modules within an area. Each unit is
identified by adding a numeric suffix to the area name; as an example, OS3 is a unit on
concurrency. Each unit is further subdivided into a set of topics, which are the lowest
level of the hierarchy.

Core and elective units
In updating the body of knowledge from the framework established in Computing
Curricula 1991, the CC2001 Task Force has to take account of the fact that the computing
discipline has expanded to such an extent that it is impossible for undergraduates to learn
every topic that has at one time been considered fundamental to the discipline. The task
force has therefore sought to define a minimal core consisting of that material that
essentially everyone teaching computer science agrees is essential to anyone obtaining an
undergraduate degree in this field. Material offered as part of an undergraduate program
that falls outside the core is considered to be elective. By insisting on a broad consensus
in the definition of the core, the task force hopes to keep the core as small as possible,
giving institutions the freedom to tailor the elective components of the curriculum in
ways that meet their individual needs.

In discussing the CC2001 recommendations during their development, we have found
that it helps to emphasize the following points:

• The core is not a complete curriculum. Because the core is defined as minimal, it does
not, by itself, constitute a complete undergraduate curriculum. Every undergraduate
program must include additional elective units from the body of knowledge, although
the CC2001 report does not define what those units will be.

• Core units are not necessarily limited to a set of introductory courses taken early in
the undergraduate curriculum. Although many of the units defined as core are indeed
introductory, there are also some core units that clearly must be covered only after
students have developed significant background in the field. For example, the task
force believes that all students must develop a significant application as some point
during their undergraduate program. The material that is essential to successful
management of projects at this scale is therefore part of the core, since it is required of
all students. At the same time, the project course experience is very likely to come
toward the end of a student’s undergraduate program. Similarly, introductory courses

CC2001 Computer Science volume – 84 –
Final Report (December 15, 2001)

may include elective units alongside the coverage of core material. The designation
core simply means required and says nothing about the level of the course in which it
appears.

Assessing the time required to cover a unit
To give readers a sense of the time required to cover a particular unit, the CC2001 report
must define a metric that establishes a standard of measurement. Choosing such a metric
has proven difficult, because no standard measure is recognized throughout the world.
For consistency with the earlier curriculum reports, the task force has chosen to express
time in hours, corresponding to the in-class time required to present the material in a
traditional lecture-oriented format. To dispel ny potential confusion, however, it is
important to underscore the following observations about the use of lecture hours as a
measure:

• The task force does not seek to endorse the lecture format. Even though we have used
a metric with its roots in a classical, lecture-oriented form, the task force believes that
there are other styles—particular given recent improvements in educational
technology—that can be at least as effective. For some of these styles, the notion of
hours may be difficult to apply. Even so, the time specifications should at least serve
as a comparative measure, in the sense that a 5-hour unit will presumably take roughly
five times as much time to cover as a 1-hour unit, independent of the teaching style.

• The hours specified do not include time spent outside of class. The time assigned to a
unit does not include the instructor’s preparation time or the time students spend
outside of class. As a general guideline, the amount of out-of-class work is
approximately three times the in-class time. Thus, a unit that is listed as requiring 3
hours will typically entail a total of 12 hours (3 in class and 9 outside).

• The hours listed for a unit represent a minumum level of coverage. The time
measurements we have assigned for each unit should be interpreted as the minimum
amount of time necessary to enable a student to perform the learning objectives for that
unit. It is always appropriate to spend more time on a unit than the mandated
minimum.

Details of the CS body of knowledge
A summary of the body of knowledge—showing the areas, units, which units are core,
and the minimum time required for each—appears as Figure A-1. The details of each
area follow as separate sections.

CC2001 Computer Science volume – 85 –
Final Report (December 15, 2001)

Figure A-1. Computer science body of knowledge with core topics underlined

DS. Discrete Structures (43 core hours)
DS1. Functions, relations, and sets (6)
DS2. Basic logic (10)
DS3. Proof techniques (12)
DS4. Basics of counting (5)
DS5. Graphs and trees (4)
DS6. Discrete probability (6)

PF. Programming Fundamentals (38 core hours)
PF1. Fundamental programming constructs (9)
PF2. Algorithms and problem-solving (6)
PF3. Fundamental data structures (14)
PF4. Recursion (5)
PF5. Event-driven programming (4)

AL. Algorithms and Complexity (31 core hours)
AL1. Basic algorithmic analysis (4)
AL2. Algorithmic strategies (6)
AL3. Fundamental computing algorithms (12)
AL4. Distributed algorithms (3)
AL5. Basic computability (6)
AL6. The complexity classes P and NP
AL7. Automata theory
AL8. Advanced algorithmic analysis
AL9. Cryptographic algorithms
AL10. Geometric algorithms
AL11. Parallel algorithms

AR. Architecture and Organization (36 core hours)
AR1. Digital logic and digital systems (6)
AR2. Machine level representation of data (3)
AR3. Assembly level machine organization (9)
AR4. Memory system organization and architecture (5)
AR5. Interfacing and communication (3)
AR6. Functional organization (7)
AR7. Multiprocessing and alternative architectures (3)
AR8. Performance enhancements
AR9. Architecture for networks and distributed systems

OS. Operating Systems (18 core hours)
OS1. Overview of operating systems (2)
OS2. Operating system principles (2)
OS3. Concurrency (6)
OS4. Scheduling and dispatch (3)
OS5. Memory management (5)
OS6. Device management
OS7. Security and protection
OS8. File systems
OS9. Real-time and embedded systems
OS10. Fault tolerance
OS11. System performance evaluation
OS12. Scripting

NC. Net-Centric Computing (15 core hours)
NC1. Introduction to net-centric computing (2)
NC2. Communication and networking (7)
NC3. Network security (3)
NC4. The web as an example of client-server computing (3)
NC5. Building web applications
NC6. Network management
NC7. Compression and decompression
NC8. Multimedia data technologies
NC9. Wireless and mobile computing

PL. Programming Languages (21 core hours)
PL1. Overview of programming languages (2)
PL2. Virtual machines (1)
PL3. Introduction to language translation (2)
PL4. Declarations and types (3)
PL5. Abstraction mechanisms (3)
PL6. Object-oriented programming (10)
PL7. Functional programming
PL8. Language translation systems
PL9. Type systems
PL10. Programming language semantics
PL11. Programming language design

Note: The numbers in parentheses represent the minimum
number of hours required to cover this material in a lecture
format. It is always appropriate to include more.

HC. Human-Computer Interaction (8 core hours)
HC1. Foundations of human-computer interaction (6)
HC2. Building a simple graphical user interface (2)
HC3. Human-centered software evaluation
HC4. Human-centered software development
HC5. Graphical user-interface design
HC6. Graphical user-interface programming
HC7. HCI aspects of multimedia systems
HC8. HCI aspects of collaboration and communication

GV. Graphics and Visual Computing (3 core hours)
GV1. Fundamental techniques in graphics (2)
GV2. Graphic systems (1)
GV3. Graphic communication
GV4. Geometric modeling
GV5. Basic rendering
GV6. Advanced rendering
GV7. Advanced techniques
GV8. Computer animation
GV9. Visualization
GV10. Virtual reality
GV11. Computer vision

IS. Intelligent Systems (10 core hours)
IS1. Fundamental issues in intelligent systems (1)
IS2. Search and constraint satisfaction (5)
IS3. Knowledge representation and reasoning (4)
IS4. Advanced search
IS5. Advanced knowledge representation and reasoning
IS6. Agents
IS7. Natural language processing
IS8. Machine learning and neural networks
IS9. AI planning systems
IS10. Robotics

IM. Information Management (10 core hours)
IM1. Information models and systems (3)
IM2. Database systems (3)
IM3. Data modeling (4)
IM4. Relational databases
IM5. Database query languages
IM6. Relational database design
IM7. Transaction processing
IM8. Distributed databases
IM9. Physical database design
IM10. Data mining
IM11. Information storage and retrieval
IM12. Hypertext and hypermedia
IM13. Multimedia information and systems
IM14. Digital libraries

SP. Social and Professional Issues (16 core hours)
SP1. History of computing (1)
SP2. Social context of computing (3)
SP3. Methods and tools of analysis (2)
SP4. Professional and ethical responsibilities (3)
SP5. Risks and liabilities of computer-based systems (2)
SP6. Intellectual property (3)
SP7. Privacy and civil liberties (2)
SP8. Computer crime
SP9. Economic issues in computing
SP10. Philosophical frameworks

SE. Software Engineering (31 core hours)
SE1. Software design (8)
SE2. Using APIs (5)
SE3. Software tools and environments (3)
SE4. Software processes (2)
SE5. Software requirements and specifications (4)
SE6. Software validation (3)
SE7. Software evolution (3)
SE8. Software project management (3)
SE9. Component-based computing
SE10. Formal methods
SE11. Software reliability
SE12. Specialized systems development

CN. Computational Science (no core hours)
CN1. Numerical analysis
CN2. Operations research
CN3. Modeling and simulation
CN4. High-performance computing

CC2001 Computer Science volume – 86 –
Final Report (December 15, 2001)

Discrete Structures (DS)
DS1. Functions, relations, and sets [core]
DS2. Basic logic [core]
DS3. Proof techniques [core]
DS4. Basics of counting [core]
DS5. Graphs and trees [core]
DS6. Discrete probability [core]

Discrete structures is foundational material for computer science. By foundational we
mean that relatively few computer scientists will be working primarily on discrete
structures, but that many other areas of computer science require the ability to work with
concepts from discrete structures. Discrete structures includes important material from
such areas as set theory, logic, graph theory, and combinatorics.

The material in discrete structures is pervasive in the areas of data structures and
algorithms but appears elsewhere in computer science as well. For example, an ability to
create and understand a formal proof is essential in formal specification, in verification,
and in cryptography. Graph theory concepts are used in networks, operating systems, and
compilers. Set theory concepts are used in software engineering and in databases.

As the field of computer science matures, more and more sophisticated analysis
techniques are being brought to bear on practical problems. To understand the
computational techniques of the future, today’s students will need a strong background in
discrete structures.

Finally, we note that while areas often have somewhat fuzzy boundaries, this is especially
true for discrete structures. We have gathered together here a body of material of a
mathematical nature that computer science education must include, and that computer
science educators know well enough to specify in great detail. However, the decision
about where to draw the line between this area and the Algorithms and Complexity area
(AL) on the one hand, and topics left only as supporting mathematics on the other hand,
was inevitably somewhat arbitrary. We remind readers that there are vital topics from
those two areas that some schools will include in courses with titles like discrete
structures.

DS1. Functions, relations, and sets [core]
Minimum core coverage time: 6 hours

Topics:
Functions (surjections, injections, inverses, composition)
Relations (reflexivity, symmetry, transitivity, equivalence relations)
Sets (Venn diagrams, complements, Cartesian products, power sets)
Pigeonhole principle
Cardinality and countability

Learning objectives:
1. Explain with examples the basic terminology of functions, relations, and sets.
2. Perform the operations associated with sets, functions, and relations.
3. Relate practical examples to the appropriate set, function, or relation model, and

interpret the associated operations and terminology in context.
4. Demonstrate basic counting principles, including uses of diagonalization and the

pigeonhole principle.

CC2001 Computer Science volume – 87 –
Final Report (December 15, 2001)

DS2. Basic logic [core]
Minimum core coverage time: 10 hours

Topics:
Propositional logic
Logical connectives
Truth tables
Normal forms (conjunctive and disjunctive)
Validity
Predicate logic
Universal and existential quantification
Modus ponens and modus tollens
Limitations of predicate logic

Learning objectives:
1. Apply formal methods of symbolic propositional and predicate logic.
2. Describe how formal tools of symbolic logic are used to model algorithms and real-

life situations.
3. Use formal logic proofs and logical reasoning to solve problems such as puzzles.
4. Describe the importance and limitations of predicate logic.

DS3. Proof techniques [core]
Minimum core coverage time: 12 hours

Topics:
Notions of implication, converse, inverse, contrapositive, negation, and contradiction
The structure of formal proofs
Direct proofs
Proof by counterexample
Proof by contraposition
Proof by contradiction
Mathematical induction
Strong induction
Recursive mathematical definitions
Well orderings

Learning objectives:
1. Outline the basic structure of and give examples of each proof technique described in

this unit.
2. Discuss which type of proof is best for a given problem.
3. Relate the ideas of mathematical induction to recursion and recursively defined

structures.
4. Identify the difference between mathematical and strong induction and give examples

of the appropriate use of each.

DS4. Basics of counting [core]
Minimum core coverage time: 5 hours

Topics:
Counting arguments

– Sum and product rule
– Inclusion-exclusion principle

CC2001 Computer Science volume – 88 –
Final Report (December 15, 2001)

– Arithmetic and geometric progressions
– Fibonacci numbers

The pigeonhole principle
Permutations and combinations

– Basic definitions
– Pascal’s identity
– The binomial theorem

Solving recurrence relations
– Common examples
– The Master theorem

Learning objectives:
1. Compute permutations and combinations of a set, and interpret the meaning in the

context of the particular application.
2. State the definition of the Master theorem.
3. Solve a variety of basic recurrence equations.
4. Analyze a problem to create relevant recurrence equations or to identify important

counting questions.

DS5. Graphs and trees [core]
Minimum core coverage time: 4 hours

Topics:
Trees
Undirected graphs
Directed graphs
Spanning trees
Traversal strategies

Learning objectives:
1. Illustrate by example the basic terminology of graph theory, and some of the

properties and special cases of each.
2. Demonstrate different traversal methods for trees and graphs.
3. Model problems in computer science using graphs and trees.
4. Relate graphs and trees to data structures, algorithms, and counting.

DS6. Discrete probability [core]
Minimum core coverage time: 6 hours

Topics:
Finite probability space, probability measure, events
Conditional probability, independence, Bayes’ theorem
Integer random variables, expectation

Learning objectives:
1. Calculate probabilities of events and expectations of random variables for elementary

problems such as games of chance.
2. Differentiate between dependent and independent events.
3. Apply the binomial theorem to independent events and Bayes theorem to dependent

events.
4. Apply the tools of probability to solve problems such as the Monte Carlo method, the

average case analysis of algorithms, and hashing.

CC2001 Computer Science volume – 89 –
Final Report (December 15, 2001)

Programming Fundamentals (PF)
PF1. Fundamental programming constructs [core]
PF2. Algorithms and problem-solving [core]
PF3. Fundamental data structures [core]
PF4. Recursion [core]
PF5. Event-driven programming [core]

Fluency in a programming language is prerequisite to the study of most of computer
science. In the CC1991 report, knowledge of a programming language—while identified
as essential—was given little emphasis in the curriculum. The “Introduction to a
Programming Language” area in CC1991 represents only 12 hours of class time and is
identified as optional, under the optimistic assumption that “increasing numbers of
students . . . gain such experience in secondary school.” We believe that undergraduate
computer science programs must teach students how to use at least one programming
language well; furthermore, we recommend that computer science programs should teach
students to become competent in languages that make use of at least two programming
paradigms. Accomplishing this goal requires considerably more than 12 hours.

This knowledge area consists of those skills and concepts that are essential to
programming practice independent of the underlying paradigm. As a result, this area
includes units on fundamental programming concepts, basic data structures, and
algorithmic processes. These units, however, by no means cover the full range of
programming knowledge that a computer science undergraduate must know. Many of the
other areas—most notably Programming Languages (PL) and Software Engineering
(SE)—also contain programming-related units that are part of the undergraduate core. In
most cases, these units could equally well have been assigned to either Programming
Fundamentals or the more advanced area.

PF1. Fundamental programming constructs [core]
Minimum core coverage time: 9 hours

Topics:
Basic syntax and semantics of a higher-level language
Variables, types, expressions, and assignment
Simple I/O
Conditional and iterative control structures
Functions and parameter passing
Structured decomposition

Learning objectives:
1. Analyze and explain the behavior of simple programs involving the fundamental

programming constructs covered by this unit.
2. Modify and expand short programs that use standard conditional and iterative control

structures and functions.
3. Design, implement, test, and debug a program that uses each of the following

fundamental programming constructs: basic computation, simple I/O, standard
conditional and iterative structures, and the definition of functions.

4. Choose appropriate conditional and iteration constructs for a given programming task.
5. Apply the techniques of structured (functional) decomposition to break a program

into smaller pieces.
6. Describe the mechanics of parameter passing.

CC2001 Computer Science volume – 90 –
Final Report (December 15, 2001)

PF2. Algorithms and problem-solving [core]
Minimum core coverage time: 6 hours

Topics:
Problem-solving strategies
The role of algorithms in the problem-solving process
Implementation strategies for algorithms
Debugging strategies
The concept and properties of algorithms

Learning objectives:
1. Discuss the importance of algorithms in the problem-solving process.
2. Identify the necessary properties of good algorithms.
3. Create algorithms for solving simple problems.
4. Use pseudocode or a programming language to implement, test, and debug algorithms

for solving simple problems.
5. Describe strategies that are useful in debugging.

PF3. Fundamental data structures [core]
Minimum core coverage time: 14 hours

Topics:
Primitive types
Arrays
Records
Strings and string processing
Data representation in memory
Static, stack, and heap allocation
Runtime storage management
Pointers and references
Linked structures
Implementation strategies for stacks, queues, and hash tables
Implementation strategies for graphs and trees
Strategies for choosing the right data structure

Learning objectives:
1. Discuss the representation and use of primitive data types and built-in data structures.
2. Describe how the data structures in the topic list are allocated and used in memory.
3. Describe common applications for each data structure in the topic list.
4. Implement the user-defined data structures in a high-level language.
5. Compare alternative implementations of data structures with respect to performance.
6. Write programs that use each of the following data structures: arrays, records, strings,

linked lists, stacks, queues, and hash tables.
7. Compare and contrast the costs and benefits of dynamic and static data structure

implementations.
8. Choose the appropriate data structure for modeling a given problem.

CC2001 Computer Science volume – 91 –
Final Report (December 15, 2001)

PF4. Recursion [core]
Minimum core coverage time: 5 hours

Topics:
The concept of recursion
Recursive mathematical functions
Simple recursive procedures
Divide-and-conquer strategies
Recursive backtracking
Implementation of recursion

Learning objectives:
1. Describe the concept of recursion and give examples of its use.
2. Identify the base case and the general case of a recursively defined problem.
3. Compare iterative and recursive solutions for elementary problems such as factorial.
4. Describe the divide-and-conquer approach.
5. Implement, test, and debug simple recursive functions and procedures.
6. Describe how recursion can be implemented using a stack.
7. Discuss problems for which backtracking is an appropriate solution.
8. Determine when a recursive solution is appropriate for a problem.

PF5. Event-driven programming [core]
Minimum core coverage time: 4 hours

Topics:
Event-handling methods
Event propagation
Exception handling

Learning objectives:
1. Explain the difference between event-driven programming and command-line

programming.
2. Design, code, test, and debug simple event-driven programs that respond to user

events.
3. Develop code that responds to exception conditions raised during execution.

CC2001 Computer Science volume – 92 –
Final Report (December 15, 2001)

Algorithms and Complexity (AL)
AL1. Basic algorithmic analysis [core]
AL2. Algorithmic strategies [core]
AL3. Fundamental computing algorithms [core]
AL4. Distributed algorithms [core]
AL5. Basic computability [core]
AL6. The complexity classes P and NP [elective]
AL7. Automata theory [elective]
AL8. Advanced algorithmic analysis [elective]
AL9. Cryptographic algorithms [elective]
AL10. Geometric algorithms [elective]
AL11. Parallel algorithms [elective]

Algorithms are fundamental to computer science and software engineering. The real-
world performance of any software system depends on only two things: (1) the
algorithms chosen and (2) the suitability and efficiency of the various layers of
implementation. Good algorithm design is therefore crucial for the performance of all
software systems. Moreover, the study of algorithms provides insight into the intrinsic
nature of the problem as well as possible solution techniques independent of
programming language, programming paradigm, computer hardware, or any other
implementation aspect.

An important part of computing is the ability to select algorithms appropriate to particular
purposes and to apply them, recognizing the possibility that no suitable algorithm may
exist. This facility relies on understanding the range of algorithms that address an
important set of well-defined problems, recognizing their strengths and weaknesses, and
their suitability in particular contexts. Efficiency is a pervasive theme throughout this
area.

AL1. Basic algorithmic analysis [core]
Minimum core coverage time: 4 hours

Topics:
Asymptotic analysis of upper and average complexity bounds
Identifying differences among best, average, and worst case behaviors
Big O, little o, omega, and theta notation
Standard complexity classes
Empirical measurements of performance
Time and space tradeoffs in algorithms
Using recurrence relations to analyze recursive algorithms

Learning objectives:
1. Explain the use of big O, omega, and theta notation to describe the amount of work

done by an algorithm.
2. Use big O, omega, and theta notation to give asymptotic upper, lower, and tight

bounds on time and space complexity of algorithms.
3. Determine the time and space complexity of simple algorithms.
4. Deduce recurrence relations that describe the time complexity of recursively defined

algorithms.
5. Solve elementary recurrence relations.

CC2001 Computer Science volume – 93 –
Final Report (December 15, 2001)

AL2. Algorithmic strategies [core]
Minimum core coverage time: 6 hours

Topics:
Brute-force algorithms
Greedy algorithms
Divide-and-conquer
Backtracking
Branch-and-bound
Heuristics
Pattern matching and string/text algorithms
Numerical approximation algorithms

Learning objectives:
1. Describe the shortcoming of brute-force algorithms.
2. For each of several kinds of algorithm (brute force, greedy, divide-and-conquer,

backtracking, branch-and-bound, and heuristic), identify an example of everyday
human behavior that exemplifies the basic concept.

3. Implement a greedy algorithm to solve an appropriate problem.
4. Implement a divide-and-conquer algorithm to solve an appropriate problem.
5. Use backtracking to solve a problem such as navigating a maze.
6. Describe various heuristic problem-solving methods.
7. Use pattern matching to analyze substrings.
8. Use numerical approximation to solve mathematical problems, such as finding the

roots of a polynomial.

AL3. Fundamental computing algorithms [core]
Minimum core coverage time: 12 hours

Topics:
Simple numerical algorithms
Sequential and binary search algorithms
Quadratic sorting algorithms (selection, insertion)
O(N log N) sorting algorithms (Quicksort, heapsort, mergesort)
Hash tables, including collision-avoidance strategies
Binary search trees
Representations of graphs (adjacency list, adjacency matrix)
Depth- and breadth-first traversals
Shortest-path algorithms (Dijkstra’s and Floyd’s algorithms)
Transitive closure (Floyd’s algorithm)
Minimum spanning tree (Prim’s and Kruskal’s algorithms)
Topological sort

Learning objectives:
1. Implement the most common quadratic and O(N log N) sorting algorithms.
2. Design and implement an appropriate hashing function for an application.
3. Design and implement a collision-resolution algorithm for a hash table.

CC2001 Computer Science volume – 94 –
Final Report (December 15, 2001)

4. Discuss the computational efficiency of the principal algorithms for sorting,
searching, and hashing.

5. Discuss factors other than computational efficiency that influence the choice of
algorithms, such as programming time, maintainability, and the use of application-
specific patterns in the input data.

6. Solve problems using the fundamental graph algorithms, including depth-first and
breadth-first search, single-source and all-pairs shortest paths, transitive closure,
topological sort, and at least one minimum spanning tree algorithm.

7. Demonstrate the following capabilities: to evaluate algorithms, to select from a range
of possible options, to provide justification for that selection, and to implement the
algorithm in programming context.

AL4. Distributed algorithms [core]
Minimum core coverage time: 3 hours

Topics:
Consensus and election
Termination detection
Fault tolerance
Stabilization

Learning objectives:
1. Explain the distributed paradigm.
2. Explain one simple distributed algorithm.
3. Determine when to use consensus or election algorithms.
4. Distinguish between logical and physical clocks.
5. Describe the relative ordering of events in a distributed algorithm.

AL5. Basic computability [core]
Minimum core coverage time: 6 hours

Topics:
Finite-state machines
Context-free grammars
Tractable and intractable problems
Uncomputable functions
The halting problem
Implications of uncomputability

Learning objectives:
1. Discuss the concept of finite state machines.
2. Explain context-free grammars.
3. Design a deterministic finite-state machine to accept a specified language.
4. Explain how some problems have no algorithmic solution.
5. Provide examples that illustrate the concept of uncomputability.

CC2001 Computer Science volume – 95 –
Final Report (December 15, 2001)

AL6. The complexity classes P and NP [elective]
Topics:

Definition of the classes P and NP
NP-completeness (Cook’s theorem)
Standard NP-complete problems
Reduction techniques

Learning objectives:
1. Define the classes P and NP.
2. Explain the significance of NP-completeness.
3. Prove that a problem is NP-complete by reducing a classic known NP-complete

problem to it.

AL7. Automata theory [elective]
Topics:

Deterministic finite automata (DFAs)
Nondeterministic finite automata (NFAs)
Equivalence of DFAs and NFAs
Regular expressions
The pumping lemma for regular expressions
Push-down automata (PDAs)
Relationship of PDAs and context-free grammars
Properties of context-free grammars
Turing machines
Nondeterministic Turing machines
Sets and languages
Chomsky hierarchy
The Church-Turing thesis

Learning objectives:
1. Determine a language’s location in the Chomsky hierarchy (regular sets, context-free,

context-sensitive, and recursively enumerable languages).
2. Prove that a language is in a specified class and that it is not in the next lower class.
3. Convert among equivalently powerful notations for a language, including among

DFAs, NFAs, and regular expressions, and between PDAs and CFGs.
4. Explain at least one algorithm for both top-down and bottom-up parsing.
5. Explain the Church-Turing thesis and its significance.

AL8. Advanced algorithmic analysis [elective]
Topics:

Amortized analysis
Online and offline algorithms
Randomized algorithms
Dynamic programming
Combinatorial optimization

CC2001 Computer Science volume – 96 –
Final Report (December 15, 2001)

Learning objectives:
1. Use the potential method to provide an amortized analysis of previously unseen data

structure, given the potential function.
2. Explain why competitive analysis is an appropriate measure for online algorithms.
3. Explain the use of randomization in the design of an algorithm for a problem where a

deterministic algorithm is unknown or much more difficult.
4. Design and implement a dynamic programming solution to a problem.

AL9. Cryptographic algorithms [elective]
Topics:

Historical overview of cryptography
Private-key cryptography and the key-exchange problem
Public-key cryptography
Digital signatures
Security protocols
Applications (zero-knowledge proofs, authentication, and so on)

Learning objectives:
1. Describe efficient basic number-theoretic algorithms, including greatest common

divisor, multiplicative inverse mod n, and raising to powers mod n.
2. Describe at least one public-key cryptosystem, including a necessary complexity-

theoretic assumption for its security.
3. Create simple extensions of cryptographic protocols, using known protocols and

cryptographic primitives.

AL10. Geometric algorithms [elective]
Topics:

Line segments: properties, intersections
Convex hull finding algorithms

Learning objectives:
1. Describe and give time analysis of at least two algorithms for finding a convex hull.
2. Justify the Omega(N log N) lower bound on finding the convex hull.
3. Describe at least one additional efficient computational geometry algorithm, such as

finding the closest pair of points, convex layers, or maximal layers.

AL11. Parallel algorithms [elective]
Topics:

PRAM model
Exclusive versus concurrent reads and writes
Pointer jumping
Brent’s theorem and work efficiency

Learning objectives:
1. Describe implementation of linked lists on a PRAM.
2. Use parallel-prefix operation to perform simple computations efficiently in parallel.
3. Explain Brent’s theorem and its relevance.

CC2001 Computer Science volume – 97 –
Final Report (December 15, 2001)

Architecture and Organization (AR)
AR1. Digital logic and digital systems [core]
AR2. Machine level representation of data [core]
AR3. Assembly level machine organization [core]
AR4. Memory system organization and architecture [core]
AR5. Interfacing and communication [core]
AR6. Functional organization [core]
AR7. Multiprocessing and alternative architectures [core]
AR8. Performance enhancements [elective]
AR9. Architecture for networks and distributed systems [elective]

The computer lies at the heart of computing. Without it most of the computing
disciplines today would be a branch of theoretical mathematics. To be a professional in
any field of computing today, one should not regard the computer as just a black box that
executes programs by magic. All students of computing should acquire some
understanding and appreciation of a computer system’s functional components, their
characteristics, their performance, and their interactions. There are practical implications
as well. Students need to understand computer architecture in order to structure a
program so that it runs more efficiently on a real machine. In selecting a system to use,
they should to able to understand the tradeoff among various components, such as CPU
clock speed vs. memory size.

The learning outcomes specified for these topics correspond primarily to the core and are
intended to support programs that elect to require only the minimum 36 hours of
computer architecture of their students. For programs that want to teach more than the
minimum, the same topics (AR1-AR7) can be treated at a more advanced level by
implementing a two-course sequence. For programs that want to cover the elective
topics, those topics can be introduced within a two-course sequence and/or be treated in a
more comprehesive way in a third course.

AR1. Digital logic and digital systems [core]
Minimum core coverage time: 6 hours

Topics:
Overview and history of computer architecture
Fundamental building blocks (logic gates, flip-flops, counters, registers, PLA)
Logic expressions, minimization, sum of product forms
Register transfer notation
Physical considerations (gate delays, fan-in, fan-out)

Learning objectives:
1. Describe the progression of computer architecture from vacuum tubes to VLSI.
2. Demonstrate an understanding of the basic building blocks and their role in the

historical development of computer architecture.
3. Use mathematical expressions to describe the functions of simple combinational and

sequential circuits.
4. Design a simple circuit using the fundamental building blocks.

CC2001 Computer Science volume – 98 –
Final Report (December 15, 2001)

AR2. Machine level representation of data [core]
Minimum core coverage time: 3 hours

Topics:
Bits, bytes, and words
Numeric data representation and number bases
Fixed- and floating-point systems
Signed and twos-complement representations
Representation of nonnumeric data (character codes, graphical data)
Representation of records and arrays

Learning objectives:
1. Explain the reasons for using different formats to represent numerical data.
2. Explain how negative integers are stored in sign-magnitude and twos-complement

representation.
3. Convert numerical data from one format to another.
4. Discuss how fixed-length number representations affect accuracy and precision.
5. Describe the internal representation of nonnumeric data.
6. Describe the internal representation of characters, strings, records, and arrays.

AR3. Assembly level machine organization [core]
Minimum core coverage time: 9 hours

Topics:
Basic organization of the von Neumann machine
Control unit; instruction fetch, decode, and execution
Instruction sets and types (data manipulation, control, I/O)
Assembly/machine language programming
Instruction formats
Addressing modes
Subroutine call and return mechanisms
I/O and interrupts

Learning objectives:
1. Explain the organization of the classical von Neumann machine and its major

functional units.
2. Explain how an instruction is executed in a classical von Neumann machine.
3. Summarize how instructions are represented at both the machine level and in the

context of a symbolic assembler.
4. Explain different instruction formats, such as addresses per instruction and variable

length vs. fixed length formats.
5. Write simple assembly language program segments.
6. Demonstrate how fundamental high-level programming constructs are implemented

at the machine-language level.
7. Explain how subroutine calls are handled at the assembly level.
8. Explain the basic concepts of interrupts and I/O operations.

CC2001 Computer Science volume – 99 –
Final Report (December 15, 2001)

AR4. Memory system organization and architecture [core]
Minimum core coverage time: 5 hours

Topics:
Storage systems and their technology
Coding, data compression, and data integrity
Memory hierarchy
Main memory organization and operations
Latency, cycle time, bandwidth, and interleaving
Cache memories (address mapping, block size, replacement and store policy)
Virtual memory (page table, TLB)
Fault handling and reliability

Learning objectives:
1. Identify the main types of memory technology.
2. Explain the effect of memory latency on running time.
3. Explain the use of memory hierarchy to reduce the effective memory latency.
4. Describe the principles of memory management.
5. Describe the role of cache and virtual memory.
6. Explain the workings of a system with virtual memory management.

AR5. Interfacing and communication [core]
Minimum core coverage time: 3 hours

Topics:
I/O fundamentals: handshaking, buffering, programmed I/O, interrupt-driven I/O
Interrupt structures: vectored and prioritized, interrupt acknowledgment
External storage, physical organization, and drives
Buses: bus protocols, arbitration, direct-memory access (DMA)
Introduction to networks
Multimedia support
RAID architectures

Learning objectives:
1. Explain how interrupts are used to implement I/O control and data transfers.
2. Identify various types of buses in a computer system.
3. Describe data access from a magnetic disk drive.
4. Compare the common network configurations.
5. Identify interfaces needed for multimedia support.
6. Describe the advantages and limitations of RAID architectures.

CC2001 Computer Science volume – 100 –
Final Report (December 15, 2001)

AR6. Functional organization [core]
Minimum core coverage time: 7 hours

Topics:
Implementation of simple datapaths
Control unit: hardwired realization vs. microprogrammed realization
Instruction pipelining
Introduction to instruction-level parallelism (ILP)

Learning objectives:
1. Compare alternative implementation of datapaths.
2. Discuss the concept of control points and the generation of control signals using

hardwired or microprogrammed implementations.
3. Explain basic instruction level parallelism using pipelining and the major hazards that

may occur.

AR7. Multiprocessing and alternative architectures [core]
Minimum core coverage time: 3 hours

Topics:
Introduction to SIMD, MIMD, VLIW, EPIC
Systolic architecture
Interconnection networks (hypercube, shuffle-exchange, mesh, crossbar)
Shared memory systems
Cache coherence
Memory models and memory consistency

Learning objectives:
1. Discuss the concept of parallel processing beyond the classical von Neumann model.
2. Describe alternative architectures such as SIMD, MIMD, and VLIW.
3. Explain the concept of interconnection networks and characterize different

approaches.
4. Discuss the special concerns that multiprocessing systems present with respect to

memory management and describe how these are addressed.

AR8. Performance enhancements [elective]
Topics:

Superscalar architecture
Branch prediction
Prefetching
Speculative execution
Multithreading
Scalability

Learning objectives:
1. Describe superscalar architectures and their advantages.
2. Explain the concept of branch prediction and its utility.
3. Characterize the costs and benefits of prefetching.

CC2001 Computer Science volume – 101 –
Final Report (December 15, 2001)

4. Explain speculative execution and identify the conditions that justify it.
5. Discuss the performance advantages that multithreading can offer in an architecture

along with the factors that make it difficult to derive maximum benefits from this
approach.

6. Describe the relevance of scalability to performance.

AR9. Architecture for networks and distributed systems [elective]
Topics:

Introduction to LANs and WANs
Layered protocol design, ISO/OSI, IEEE 802
Impact of architectural issues on distributed algorithms
Network computing
Distributed multimedia

Learning objectives:
1. Explain the basic components of network systems and distinguish between LANs and

WANs.
2. Discuss the architectural issues involved in the design of a layered network protocol.
3. Explain how architectures differ in network and distributed systems.
4. Discuss architectural issues related to network computing and distributed multimedia.

CC2001 Computer Science volume – 102 –
Final Report (December 15, 2001)

Operating Systems (OS)
OS1. Overview of operating systems [core]
OS2. Operating system principles [core]
OS3. Concurrency [core]
OS4. Scheduling and dispatch [core]
OS5. Memory management [core]
OS6. Device management [elective]
OS7. Security and protection [elective]
OS8. File systems [elective]
OS9. Real-time and embedded systems [elective]
OS10. Fault tolerance [elective]
OS11. System performance evaluation [elective]
OS12. Scripting [elective]

An operating system defines an abstraction of hardware behavior with which
programmers can control the hardware. It also manages resource sharing among the
computer’s users. The topics in this area explain the issues that influence the design of
contemporary operating systems. Courses that cover this area will typically include a
laboratory component to enable students to experiment with operating systems.

Over the years, operating systems and their abstractions have become complex relative to
typical application software. It is necessary to ensure that the student understands the
extent of the use of an operating system prior to a detailed study of internal
implementation algorithms and data structures. Therefore these topics address both the
use of operating systems (externals) and their design and implementation (internals).
Many of the ideas involved in operating system use have wider applicability across the
field of computer science, such as concurrent programming. Studying internal design has
relevance in such diverse areas as dependable programming, algorithm design and
implementation, modern device development, building virtual environments, caching
material across the web, building secure and safe systems, network management, and
many others.

OS1. Overview of operating systems [core]
Minimum core coverage time: 2 hours

Topics:
Role and purpose of the operating system
History of operating system development
Functionality of a typical operating system
Mechanisms to support client-server models, hand-held devices
Design issues (efficiency, robustness, flexibility, portability, security, compatibility)
Influences of security, networking, multimedia, windows

Learning objectives:
1. Explain the objectives and functions of modern operating systems.
2. Describe how operating systems have evolved over time from primitive batch systems

to sophisticated multiuser systems.
3. Analyze the tradeoffs inherent in operating system design.
4. Describe the functions of a contemporary operating system with respect to

convenience, efficiency, and the ability to evolve.

CC2001 Computer Science volume – 103 –
Final Report (December 15, 2001)

5. Discuss networked, client-server, distributed operating systems and how they differ
from single user operating systems.

6. Identify potential threats to operating systems and the security features design to
guard against them.

7. Describe how issues such as open source software and the increased use of the
Internet are influencing operating system design.

OS2. Operating system principles [core]
Minimum core coverage time: 2 hours

Topics:
Structuring methods (monolithic, layered, modular, micro-kernel models)
Abstractions, processes, and resources
Concepts of application program interfaces (APIs)
Application needs and the evolution of hardware/software techniques
Device organization
Interrupts: methods and implementations
Concept of user/system state and protection, transition to kernel mode

Learning objectives:
1. Explain the concept of a logical layer.
2. Explain the benefits of building abstract layers in hierarchical fashion.
3. Defend the need for APIs and middleware.
4. Describe how computing resources are used by application software and managed by

system software.
5. Contrast kernel and user mode in an operating system.
6. Discuss the advantages and disadvantages of using interrupt processing.
7. Compare and contrast the various ways of structuring an operating system such as

object-oriented, modular, micro-kernel, and layered.
8. Explain the use of a device list and driver I/O queue.

OS3. Concurrency [core]
Minimum core coverage time: 6 hours

Topics:
States and state diagrams
Structures (ready list, process control blocks, and so forth)
Dispatching and context switching
The role of interrupts
Concurrent execution: advantages and disadvantages
The “mutual exclusion” problem and some solutions
Deadlock: causes, conditions, prevention
Models and mechanisms (semaphores, monitors, condition variables, rendezvous)
Producer-consumer problems and synchronization
Multiprocessor issues (spin-locks, reentrancy)

CC2001 Computer Science volume – 104 –
Final Report (December 15, 2001)

Learning objectives:
1. Describe the need for concurrency within the framework of an operating system.
2. Demonstrate the potential run-time problems arising from the concurrent operation of

many separate tasks.
3. Summarize the range of mechanisms that can be employed at the operating system

level to realize concurrent systems and describe the benefits of each.
4. Explain the different states that a task may pass through and the data structures

needed to support the management of many tasks.
5. Summarize the various approaches to solving the problem of mutual exclusion in an

operating system.
6. Describe reasons for using interrupts, dispatching, and context switching to support

concurrency in an operating system.
7. Create state and transition diagrams for simple problem domains.
8. Discuss the utility of data structures, such as stacks and queues, in managing

concurrency.
9. Explain conditions that lead to deadlock.

OS4. Scheduling and dispatch [core]
Minimum core coverage time: 3 hours

Topics:
Preemptive and nonpreemptive scheduling
Schedulers and policies
Processes and threads
Deadlines and real-time issues

Learning objectives:
1. Compare and contrast the common algorithms used for both preemptive and non-

preemptive scheduling of tasks in operating systems, such as priority, performance
comparison, and fair-share schemes.

2. Describe relationships between scheduling algorithms and application domains.
3. Discuss the types of processor scheduling such as short-term, medium-term, long-

term, and I/O.
4. Describe the difference between processes and threads.
5. Compare and contrast static and dynamic approaches to real-time scheduling.
6. Discuss the need for preemption and deadline scheduling.
7. Identify ways that the logic embodied in scheduling algorithms are applicable to other

domains, such as disk I/O, network scheduling, project scheduling, and other
problems unrelated to computing.

CC2001 Computer Science volume – 105 –
Final Report (December 15, 2001)

OS5. Memory management [core]
Minimum core coverage time: 5 hours

Topics:
Review of physical memory and memory management hardware
Overlays, swapping, and partitions
Paging and segmentation
Placement and replacement policies
Working sets and thrashing
Caching

Learning objectives:
1. Explain memory hierarchy and cost-performance tradeoffs.
2. Explain the concept of virtual memory and how it is realized in hardware and

software.
3. Summarize the principles of virtual memory as applied to caching, paging, and

segmentation.
4. Evaluate the tradeoffs in terms of memory size (main memory, cache memory,

auxiliary memory) and processor speed.
5. Defend the different ways of allocating memory to tasks, citing the relative merits of

each.
6. Describe the reason for and use of cache memory.
7. Compare and contrast paging and segmentation techniques.
8. Discuss the concept of thrashing, both in terms of the reasons it occurs and the

techniques used to recognize and manage the problem.
9. Analyze the various memory portioning techniques including overlays, swapping, and

placement and replacement policies.

OS6. Device management [elective]
Topics:

Characteristics of serial and parallel devices
Abstracting device differences
Buffering strategies
Direct memory access
Recovery from failures

Learning objectives:
1. Explain the key difference between serial and parallel devices and identify the

conditions in which each is appropriate.
2. Identify the relationship between the physical hardware and the virtual devices

maintained by the operating system.
3. Explain buffering and describe strategies for implementing it.
4. Differentiate the mechanisms used in interfacing a range of devices (including hand-

held devices, networks, multimedia) to a computer and explain the implications of
these for the design of an operating system.

5. Describe the advantages and disadvantages of direct memory access and discuss the
circumstances in which its use is warranted.

CC2001 Computer Science volume – 106 –
Final Report (December 15, 2001)

6. Identify the requirements for failure recovery.
7. Implement a simple device driver for a range of possible devices.

OS7. Security and protection [elective]
Topics:

Overview of system security
Policy/mechanism separation
Security methods and devices
Protection, access, and authentication
Models of protection
Memory protection
Encryption
Recovery management

Learning objectives:
1. Defend the need for protection and security, and the role of ethical considerations in

computer use.
2. Summarize the features and limitations of an operating system used to provide

protection and security.
3. Compare and contrast current methods for implementing security.
4. Compare and contrast the strengths and weaknesses of two or more currently popular

operating systems with respect to security.
5. Compare and contrast the security strengths and weaknesses of two or more currently

popular operating systems with respect to recovery management.

OS8. File systems [elective]
Topics:

Files: data, metadata, operations, organization, buffering, sequential, nonsequential
Directories: contents and structure
File systems: partitioning, mount/unmount, virtual file systems
Standard implementation techniques
Memory-mapped files
Special-purpose file systems
Naming, searching, access, backups

Learning objectives:
1. Summarize the full range of considerations that support file systems.
2. Compare and contrast different approaches to file organization, recognizing the

strengths and weaknesses of each.
3. Summarize how hardware developments have lead to changes in our priorities for the

design and the management of file systems.

OS9. Real-time and embedded systems [elective]
Topics:

Process and task scheduling
Memory/disk management requirements in a real-time environment
Failures, risks, and recovery
Special concerns in real-time systems

CC2001 Computer Science volume – 107 –
Final Report (December 15, 2001)

Learning objectives:
1. Describe what makes a system a real-time system.
2. Explain the presence of and describe the characteristics of latency in real-time

systems.
3. Summarize special concerns that real-time systems present and how these concerns

are addressed.

OS10. Fault tolerance [elective]
Topics:

Fundamental concepts: reliable and available systems
Spatial and temporal redundancy
Methods used to implement fault tolerance
Examples of reliable systems

Learning objectives:
1. Explain the relevance of the terms fault tolerance, reliability, and availability.
2. Outline the range of methods for implementing fault tolerance in an operating system.
3. Explain how an operating system can continue functioning after a fault occurs.

OS11. System performance evaluation [elective]
Topics:

Why system performance needs to be evaluated
What is to be evaluated
Policies for caching, paging, scheduling, memory management, security, and so forth
Evaluation models: deterministic, analytic, simulation, or implementation-specific
How to collect evaluation data (profiling and tracing mechanisms)

Learning objectives:
1. Describe the performance metrics used to determine how a system performs.
2. Explain the main evaluation models used to evaluate a system.

OS12. Scripting [elective]
Topics:

Scripting and the role of scripting languages
Basic system commands
Creating scripts, parameter passing
Executing a script
Influences of scripting on programming

Learning objectives:
1. Summarize a typical set of system commands provided by an operating system.
2. Demonstrate the typical functionality of a scripting language, and interpret the

implications for programming.
3. Demonstrate the mechanisms for implementing scripts and the role of scripts on

system implementation and integration.
4. Implement a simple script that exhibits parameter passing.

CC2001 Computer Science volume – 108 –
Final Report (December 15, 2001)

Net-Centric Computing (NC)
NC1. Introduction to net-centric computing [core]
NC2. Communication and networking [core]
NC3. Network security [core]
NC4. The web as an example of client-server computing [core]
NC5. Building web applications [elective]
NC6. Network management [elective]
NC7. Compression and decompression [elective]
NC8. Multimedia data technologies [elective]
NC9. Wireless and mobile computing [elective]

Recent advances in computer and telecommunications networking, particularly those
based on TCP/IP, have increased the importance of networking technologies in the
computing discipline. Net-centric computing covers a range of sub-specialties including:
computer communication network concepts and protocols, multimedia systems, Web
standards and technologies, network security, wireless and mobile computing, and
distributed systems.

Mastery of this subject area involves both theory and practice. Learning experiences that
involve hands-on experimentation and analysis are strongly recommended as they
reinforce student understanding of concepts and their application to real-world problems.
Laboratory experiments should involve data collection and synthesis, empirical modeling,
protocol analysis at the source code level, network packet monitoring, software
construction, and evaluation of alternative design models. All of these are important
concepts that can best understood by laboratory experimentation.

NC1. Introduction to net-centric computing [core]
Minimum core coverage time: 2 hours

Topics:
Background and history of networking and the Internet
Network architectures
The range of specializations within net-centric computing

– Networks and protocols
– Networked multimedia systems
– Distributed computing
– Mobile and wireless computing

Learning objectives:
1. Discuss the evolution of early networks and the Internet.
2. Demonstrate the ability to use effectively a range of common networked applications

including e-mail, telnet, FTP, newsgroups, and web browsers, online web courses,
and instant messaging.

3. Explain the hierarchical, layered structure of a typical network architecture.
4. Describe emerging technologies in the net-centric computing area and assess their

current capabilities, limitations, and near-term potential.

CC2001 Computer Science volume – 109 –
Final Report (December 15, 2001)

NC2. Communication and networking [core]
Minimum core coverage time: 7 hours

Topics:
Network standards and standardization bodies
The ISO 7-layer reference model in general and its instantiation in TCP/IP
Circuit switching and packet switching
Streams and datagrams
Physical layer networking concepts (theoretical basis, transmission media, standards)
Data link layer concepts (framing, error control, flow control, protocols)
Internetworking and routing (routing algorithms, internetworking, congestion control)
Transport layer services (connection establishment, performance issues)

Learning objectives:
1. Discuss important network standards in their historical context.
2. Describe the responsibilities of the first four layers of the ISO reference model.
3. Discuss the differences between circuit switching and packet switching along with the

advantages and disadvantages of each.
4. Explain how a network can detect and correct transmission errors.
5. Illustrate how a packet is routed over the Internet.
6. Install a simple network with two clients and a single server using standard host-

configuration software tools such as DHCP.

NC3. Network security [core]
Minimum core coverage time: 3 hours

Topics:
Fundamentals of cryptography
Secret-key algorithms
Public-key algorithms
Authentication protocols
Digital signatures
Examples

Learning objectives:
1. Discuss the fundamental ideas of public-key cryptography.
2. Describe how public-key cryptography works.
3. Distinguish between the use of private- and public-key algorithms.
4. Summarize common authentication protocols.
5. Generate and distribute a PGP key pair and use the PGP package to send an encrypted

e-mail message.
6. Summarize the capabilities and limitations of the means of cryptography that are

conveniently available to the general public.

CC2001 Computer Science volume – 110 –
Final Report (December 15, 2001)

NC4. The web as an example of client-server computing [core]
Minimum core coverage time: 3 hours

Topics:
Web technologies

– Server-side programs
– Common gateway interface (CGI) programs
– Client-side scripts
– The applet concept

Characteristics of web servers
– Handling permissions
– File management
– Capabilities of common server architectures

Role of client computers
Nature of the client-server relationship
Web protocols
Support tools for web site creation and web management
Developing Internet information servers
Publishing information and applications

Learning objectives:
1. Explain the different roles and responsibilities of clients and servers for a range of

possible applications.
2. Select a range of tools that will ensure an efficient approach to implementing various

client-server possibilities.
3. Design and build a simple interactive web-based application (e.g., a simple web form

that collects information from the client and stores it in a file on the server).

NC5. Building web applications [elective]
Topics:

Protocols at the application layer
Principles of web engineering
Database-driven web sites
Remote procedure calls (RPC)
Lightweight distributed objects
The role of middleware
Support tools
Security issues in distributed object systems
Enterprise-wide web-based applications

Learning objectives:
1. Illustrate how interactive client-server web applications of medium size can be built

using different types of Web technologies.
2. Demonstrate how to implement a database-driven web site, explaining the relevant

technologies involved in each tier of the architecture and the accompanying
performance tradeoffs.

3. Implement a distributed system using any two distributed object frameworks and
compare them with regard to performance and security issues.

4. Discuss security issues and strategies in an enterprise-wide web-based application.

CC2001 Computer Science volume – 111 –
Final Report (December 15, 2001)

NC6. Network management [elective]
Topics:

Overview of the issues of network management
Use of passwords and access control mechanisms
Domain names and name services
Issues for Internet service providers (ISPs)
Security issues and firewalls
Quality of service issues: performance, failure recovery

Learning objectives:
1. Explain the issues for network management arising from a range of security threats,

including viruses, worms, Trojan horses, and denial-of-service attacks
2. Summarize the strengths and weaknesses associated with different approaches to

security.
3. Develop a strategy for ensuring appropriate levels of security in a system designed for

a particular purpose.
4. Implement a network firewall.

NC7. Compression and decompression [elective]
Topics:

Analog and digital representations
Encoding and decoding algorithms
Lossless and lossy compression
Data compression: Huffman coding and the Ziv-Lempel algorithm
Audio compression and decompression
Image compression and decompression
Video compression and decompression
Performance issues: timing, compression factor, suitability for real-time use

Learning objectives:
1. Summarize the basic characteristics of sampling and quantization for digital

representation.
2. Select, giving reasons that are sensitive to the specific application and particular

circumstances, the most appropriate compression techniques for text, audio, image,
and video information.

3. Explain the asymmetric property of compression and decompression algorithms.
4. Illustrate the concept of run-length encoding.
5. Illustrate how a program like the UNIX compress utility, which uses Huffman coding

and the Ziv-Lempel algorithm, would compress a typical text file.

NC8. Multimedia data technologies [elective]
Topics:

Sound and audio, image and graphics, animation and video
Multimedia standards (audio, music, graphics, image, telephony, video, TV)
Capacity planning and performance issues
Input and output devices (scanners, digital camera, touch-screens, voice-activated)
MIDI keyboards, synthesizers
Storage standards (Magneto Optical disk, CD-ROM, DVD)
Multimedia servers and file systems
Tools to support multimedia development

CC2001 Computer Science volume – 112 –
Final Report (December 15, 2001)

Learning objectives:
1. For each of several media or multimedia standards, describe in non-technical

language what the standard calls for, and explain how aspects of human perception
might be sensitive to the limitations of that standard.

2. Evaluate the potential of a computer system to host one of a range of possible
multimedia applications, including an assessment of the requirements of multimedia
systems on the underlying networking technology.

3. Describe the characteristics of a computer system (including identification of support
tools and appropriate standards) that has to host the implementation of one of a range
of possible multimedia applications.

4. Implement a multimedia application of modest size.

NC9. Wireless and mobile computing [elective]
Topics:

Overview of the history, evolution, and compatibility of wireless standards
The special problems of wireless and mobile computing
Wireless local area networks and satellite-based networks
Wireless local loops
Mobile Internet protocol
Mobile aware adaption
Extending the client-server model to accommodate mobility
Mobile data access: server data dissemination and client cache management
Software package support for mobile and wireless computing
The role of middleware and support tools
Performance issues
Emerging technologies

Learning objectives:
1. Describe the main characteristics of mobile IP and explain how differs from IP with

regard to mobility management and location management as well as performance.
2. Illustrate (with home agents and foreign agents) how e-mail and other traffic is routed

using mobile IP.
3. Implement a simple application that relies on mobile and wireless data

communications.
4. Describe areas of current and emerging interest in wireless and mobile computing,

and assess the current capabilities, limitations, and near-term potential of each.

CC2001 Computer Science volume – 113 –
Final Report (December 15, 2001)

Programming Languages (PL)
PL1. Overview of programming languages [core]
PL2. Virtual machines [core]
PL3. Introduction to language translation [core]
PL4. Declarations and types [core]
PL5. Abstraction mechanisms [core]
PL6. Object-oriented programming [core]
PL7. Functional programming [elective]
PL8. Language translation systems [elective]
PL9. Type systems [elective]
PL10. Programming language semantics [elective]
PL11. Programming language design [elective]

A programming language is a programmer’s principal interface with the computer. More
than just knowing how to program in a single language, programmers need to understand
the different styles of programming promoted by different languages. In their
professional life, they will be working with many different languages and styles at once,
and will encounter many different languages over the course of their careers.
Understanding the variety of programming languages and the design tradeoffs between
the different programming paradigms makes it much easier to master new languages
quickly. Understanding the pragmatic aspects of programming languages also requires a
basic knowledge of programming language translation and runtime features such as
storage allocation.

PL1. Overview of programming languages [core]
Minimum core coverage time: 2 hours

Topics:
History of programming languages
Brief survey of programming paradigms

– Procedural languages
– Object-oriented languages
– Functional languages
– Declarative, non-algorithmic languages
– Scripting languages

The effects of scale on programming methodology

Learning objectives:
1. Summarize the evolution of programming languages illustrating how this history has

led to the paradigms available today.
2. Identify at least one distinguishing characteristic for each of the programming

paradigms covered in this unit.
3. Evaluate the tradeoffs between the different paradigms, considering such issues as

space efficiency, time efficiency (of both the computer and the programmer), safety,
and power of expression.

4. Distinguish between programming-in-the-small and programming-in-the-large.

CC2001 Computer Science volume – 114 –
Final Report (December 15, 2001)

PL2. Virtual machines [core]
Minimum core coverage time: 1 hour

Topics:
The concept of a virtual machine
Hierarchy of virtual machines
Intermediate languages
Security issues arising from running code on an alien machine

Learning objectives:
1. Describe the importance and power of abstraction in the context of virtual machines.
2. Explain the benefits of intermediate languages in the compilation process.
3. Evaluate the tradeoffs in performance vs. portability.
4. Explain how executable programs can breach computer system security by accessing

disk files and memory.

PL3. Introduction to language translation [core]
Minimum core coverage time: 2 hours

Topics:
Comparison of interpreters and compilers
Language translation phases (lexical analysis, parsing, code generation, optimization)
Machine-dependent and machine-independent aspects of translation

Learning objectives:
1. Compare and contrast compiled and interpreted execution models, outlining the

relative merits of each..
2. Describe the phases of program translation from source code to executable code and

the files produced by these phases.
3. Explain the differences between machine-dependent and machine-independent

translation and where these differences are evident in the translation process.

PL4. Declarations and types [core]
Minimum core coverage time: 3 hours

Topics:
The conception of types as a set of values with together with a set of operations
Declaration models (binding, visibility, scope, and lifetime)
Overview of type-checking
Garbage collection

Learning objectives:
1. Explain the value of declaration models, especially with respect to programming-in-

the-large.
2. Identify and describe the properties of a variable such as its associated address, value,

scope, persistence, and size.
3. Discuss type incompatibility.
4. Demonstrate different forms of binding, visibility, scoping, and lifetime management.

CC2001 Computer Science volume – 115 –
Final Report (December 15, 2001)

5. Defend the importance of types and type-checking in providing abstraction and
safety.

6. Evaluate tradeoffs in lifetime management (reference counting vs. garbage
collection).

PL5. Abstraction mechanisms [core]
Minimum core coverage time: 3 hours

Topics:
Procedures, functions, and iterators as abstraction mechanisms
Parameterization mechanisms (reference vs. value)
Activation records and storage management
Type parameters and parameterized types
Modules in programming languages

Learning objectives:
1. Explain how abstraction mechanisms support the creation of reusable software

components.
2. Demonstrate the difference between call-by-value and call-by-reference parameter

passing.
3. Defend the importance of abstractions, especially with respect to programming-in-

the-large.
4. Describe how the computer system uses activation records to manage program

modules and their data.

PL6. Object-oriented programming [core]
Minimum core coverage time: 10 hours

Topics:
Object-oriented design
Encapsulation and information-hiding
Separation of behavior and implementation
Classes and subclasses
Inheritance (overriding, dynamic dispatch)
Polymorphism (subtype polymorphism vs. inheritance)
Class hierarchies
Collection classes and iteration protocols
Internal representations of objects and method tables

Learning objectives:
1. Justify the philosophy of object-oriented design and the concepts of encapsulation,

abstraction, inheritance, and polymorphism.
2. Design, implement, test, and debug simple programs in an object-oriented

programming language.
3. Describe how the class mechanism supports encapsulation and information hiding.
4. Design, implement, and test the implementation of “is-a” relationships among objects

using a class hierarchy and inheritance.
5. Compare and contrast the notions of overloading and overriding methods in an

object-oriented language.

CC2001 Computer Science volume – 116 –
Final Report (December 15, 2001)

6. Explain the relationship between the static structure of the class and the dynamic
structure of the instances of the class.

7. Describe how iterators access the elements of a container.

PL7. Functional programming [elective]
Topics:

– Overview and motivation of functional languages
– Recursion over lists, natural numbers, trees, and other recursively-defined data
– Pragmatics (debugging by divide and conquer; persistency of data structures)
– Amortized efficiency for functional data structures
– Closures and uses of functions as data (infinite sets, streams)

Learning objectives:
1. Outline the strengths and weaknesses of the functional programming paradigm.
2. Design, code, test, and debug programs using the functional paradigm.
3. Explain the use of functions as data, including the concept of closures.

PL8. Language translation systems [elective]
Topics:

Application of regular expressions in lexical scanners
Parsing (concrete and abstract syntax, abstract syntax trees)
Application of context-free grammars in table-driven and recursive-descent parsing
Symbol table management
Code generation by tree walking
Architecture-specific operations: instruction selection and register allocation
Optimization techniques
The use of tools in support of the translation process and the advantages thereof
Program libraries and separate compilation
Building syntax-directed tools

Learning objectives:
1. Describe the steps and algorithms used by language translators.
2. Recognize the underlying formal models such as finite state automata, push-down

automata and their connection to language definition through regular expressions and
grammars.

3. Discuss the effectiveness of optimization.
4. Explain the impact of a separate compilation facility and the existence of program

libraries on the compilation process.

PL9. Type systems [elective]
Topics:

Data type as set of values with set of operations
Data types

– Elementary types
– Product and coproduct types
– Algebraic types
– Recursive types
– Arrow (function) types
– Parameterized types

CC2001 Computer Science volume – 117 –
Final Report (December 15, 2001)

Type-checking models
Semantic models of user-defined types

– Type abbreviations
– Abstract data types
– Type equality

Parametric polymorphism
Subtype polymorphism
Type-checking algorithms

Learning objectives:
1. Formalize the notion of typing.
2. Describe each of the elementary data types.
3. Explain the concept of an abstract data type.
4. Recognize the importance of typing for abstraction and safety.
5. Differentiate between static and dynamic typing.
6. Differentiate between type declarations and type inference.
7. Evaluate languages with regard to typing.

PL10. Programming language semantics [elective]
Topics:

Informal semantics
Overview of formal semantics
Denotational semantics
Axiomatic semantics
Operational semantics

Learning objectives:
1. Explain the importance of formal semantics.
2. Differentiate between formal and informal semantics.
3. Describe the different approaches to formal semantics.
4. Evaluate the different approaches to formal semantics.

PL11. Programming language design [elective]
Topics:

General principles of language design
Design goals
Typing regimes
Data structure models
Control structure models
Abstraction mechanisms

Learning objectives:
1. Evaluate the impact of different typing regimes on language design, language usage,

and the translation process.
2. Explain the role of different abstraction mechanisms in the creation of user-defined

facilities.

CC2001 Computer Science volume – 118 –
Final Report (December 15, 2001)

Human-Computer Interaction (HC)
HC1. Foundations of human-computer interaction [core]
HC2. Building a simple graphical user interface [core]
HC3. Human-centered software evaluation [elective]
HC4. Human-centered software development [elective]
HC5. Graphical user-interface design [elective]
HC6. Graphical user-interface programming [elective]
HC7. HCI aspects of multimedia systems [elective]
HC8. HCI aspects of collaboration and communication [elective]

This list of topics is intended as an introduction to human-computer interaction for
computer science majors. Emphasis will be placed on understanding human behavior
with interactive objects, knowing how to develop and evaluate interactive software using
a human-centered approach, and general knowledge of HCI design issues with multiple
types of interactive software. Units HC1 (Foundations of Human-Computer Interaction)
and HC2 (Building a simple graphical user interface) will be required for all majors,
possibly as modules in the introductory courses. The remaining units will most likely be
integrated into one or two elective courses at the junior or senior level.

HC1. Foundations of human-computer interaction [core]
Minimum core coverage time: 6 hours

Topics:
Motivation: Why care about people?
Contexts for HCI (tools, web hypermedia, communication)
Human-centered development and evaluation
Human performance models: perception, movement, and cognition
Human performance models: culture, communication, and organizations
Accommodating human diversity
Principles of good design and good designers; engineering tradeoffs
Introduction to usability testing

Learning objectives:
1. Discuss the reasons for human-centered software development.
2. Summarize the basic science of psychological and social interaction.
3. Differentiate between the role of hypotheses and experimental results vs. correlations.
4. Develop a conceptual vocabulary for analyzing human interaction with software:

affordance, conceptual model, feedback, and so forth.
5. Distinguish between the different interpretations that a given icon, symbol, word, or

color can have in (a) two different human cultures and (b) in a culture and one of its
subcultures.

6. In what ways might the design of a computer system or application succeed or fail in
terms of respecting human diversity.

7. Create and conduct a simple usability test for an existing software application.

CC2001 Computer Science volume – 119 –
Final Report (December 15, 2001)

HC2. Building a simple graphical user interface [core]
Minimum core coverage time: 2 hours

Topics:
Principles of graphical user interfaces (GUIs)
GUI toolkits

Learning objectives:
1. Identify several fundamental principles for effective GUI design.
2. Use a GUI toolkit to create a simple application that supports a graphical user

interface.
3. Illustrate the effect of fundamental design principles on the structure of a graphical

user interface.
4. Conduct a simple usability test for each instance and compare the results.

HC3. Human-centered software evaluation [elective]
Topics:

Setting goals for evaluation
Evaluation without users: walkthroughs, KLM, guidelines, and standards
Evaluation with users: usability testing, interview, survey, experiment

Learning objectives:
1. Discuss evaluation criteria: learning, task time and completion, acceptability.
2. Conduct a walkthrough and a Keystroke Level Model (KLM) analysis.
3. Summarize the major guidelines and standards.
4. Conduct a usability test, an interview, and a survey.
5. Compare a usability test to a controlled experiment.
6. Evaluate an existing interactive system with human-centered criteria and a usability

test.

HC4. Human-centered software development [elective]
Topics:

Approaches, characteristics, and overview of process
Functionality and usability: task analysis, interviews, surveys
Specifying interaction and presentation
Prototyping techniques and tools

– Paper storyboards
– Inheritance and dynamic dispatch
– Prototyping languages and GUI builders

Learning objectives:
1. Explain the basic types and features of human-centered development.
2. Compare human-centered development to traditional software engineering methods.
3. State three functional requirements and three usability requirements.
4. Specify an interactive object with transition networks, OO design, or scenario

descriptions.
5. Discuss the pros and cons of development with paper and software prototypes.

CC2001 Computer Science volume – 120 –
Final Report (December 15, 2001)

HC5. Graphical user-interface design [elective]
Topics:

Choosing interaction styles and interaction techniques
HCI aspects of common widgets
HCI aspects of screen design: layout, color, fonts, labeling
Handling human failure
Beyond simple screen design: visualization, representation, metaphor
Multi-modal interaction: graphics, sound, and haptics
3D interaction and virtual reality

Learning objectives:
1. Summarize common interaction styles.
2. Explain good design principles of each of the following: common widgets; sequenced

screen presentations; simple error-trap dialog; a user manual.
3. Design, prototype, and evaluate a simple 2D GUI illustrating knowledge of the

concepts taught in HC3 and HC4.
4. Discuss the challenges that exist in moving from 2D to 3D interaction.

HC6. Graphical user-interface programming [elective]
Topics:

UIMS, dialogue independence and levels of analysis, Seeheim model
Widget classes
Event management and user interaction
Geometry management
GUI builders and UI programming environments
Cross-platform design

Learning objectives:
1. Differentiate between the responsibilities of the UIMS and the application.
2. Differentiate between kernel-based and client-server models for the UI.
3. Compare the event-driven paradigm with more traditional procedural control for the

UI.
4. Describe aggregation of widgets and constraint-based geometry management.
5. Explain callbacks and their role in GUI builders.
6. Identify at least three differences common in cross-platform UI design.
7. Identify as many commonalities as you can that are found in UIs across different

platforms.

HC7. HCI aspects of multimedia systems [elective]
Topics:

Categorization and architectures of information: hierarchies, hypermedia
Information retrieval and human performance

– Web search
– Usability of database query languages
– Graphics
– Sound

HCI design of multimedia information systems
Speech recognition and natural language processing
Information appliances and mobile computing

CC2001 Computer Science volume – 121 –
Final Report (December 15, 2001)

Learning objectives:
1. Discuss how information retrieval differs from transaction processing.
2. Explain how the organization of information supports retrieval.
3. Describe the major usability problems with database query languages.
4. Explain the current state of speech recognition technology in particular and natural

language processing in general.
5. Design, prototype, and evaluate a simple Multimedia Information System illustrating

knowledge of the concepts taught in HC4, HC5, and HC7.

HC8. HCI aspects of collaboration and communication [elective]
Topics:

Groupware to support specialized tasks: document preparation, multi-player games
Asynchronous group communication: e-mail, bulletin boards
Synchronous group communication: chat rooms, conferencing
Online communities: MUDs/MOOs
Software characters and intelligent agents

Learning objectives:
1. Compare the HCI issues in individual interaction with group interaction.
2. Discuss several issues of social concern raised by collaborative software.
3. Discuss the HCI issues in software that embodies human intention.
4. Describe the difference between synchronous and asynchronous communication.
5. Design, prototype, and evaluate a simple groupware or group communication

application illustrating knowledge of the concepts taught in HC4, HC5, and HC8.
6. Participate in a team project for which some interaction is face-to-face and other

interaction occurs via a mediating software environment.
7. Describe the similarities and differences between face-to-face and software-mediated

collaboration.

CC2001 Computer Science volume – 122 –
Final Report (December 15, 2001)

Graphics and Visual Computing (GV)
GV1. Fundamental techniques in graphics [core]
GV2. Graphic systems [core]
GV3. Graphic communication [elective]
GV4. Geometric modeling [elective]
GV5. Basic rendering [elective]
GV6. Advanced rendering [elective]
GV7. Advanced techniques [elective]
GV8. Computer animation [elective]
GV9. Visualization [elective]
GV10. Virtual reality [elective]
GV11. Computer vision [elective]

The area encompassed by Graphics and Visual Computing (GV) is divided into four
interrelated fields:

• Computer graphics. Computer graphics is the art and science of communicating
information using images that are generated and presented through computation. This
requires (a) the design and construction of models that represent information in ways
that support the creation and viewing of images, (b) the design of devices and
techniques through which the person may interact with the model or the view, (c) the
creation of techniques for rendering the model, and (d) the design of ways the images
may be preserved The goal of computer graphics is to engage the person’s visual
centers alongside other cognitive centers in understanding.

• Visualization. The field of visualization seeks to determine and present underlying
correlated structures and relationships in both scientific (computational and medical
sciences) and more abstract datasets. The prime objective of the presentation should
be to communicate the information in a dataset so as to enhance understanding.
Although current techniques of visualization exploit visual abilities of humans, other
sensory modalities, including sound and haptics (touch), are also being considered to
aid the discovery process of information.

• Virtual reality. Virtual reality (VR) enables users to experience a three-dimensional
environment generated using computer graphics, and perhaps other sensory modalities,
to provide an environment for enhanced interaction between a human user and a
computer-created world.

• Computer vision. The goal of computer vision (CV) is to deduce the properties and
structure of the three-dimensional world from one or more two-dimensional images.
The understanding and practice of computer vision depends upon core concepts in
computing, but also relates strongly to the disciplines of physics, mathematics, and
psychology.

GV1. Fundamental techniques in graphics [core]
Minimum core coverage time: 2 hours

Topics:
Hierarchy of graphics software
Using a graphics API
Simple color models (RGB, HSB, CMYK)
Homogeneous coordinates
Affine transformations (scaling, rotation, translation)
Viewing transformation
Clipping

CC2001 Computer Science volume – 123 –
Final Report (December 15, 2001)

Learning objectives:
1. Distinguish the capabilities of different levels of graphics software and describe the

appropriateness of each.
2. Create images using a standard graphics API.
3. Use the facilities provided by a standard API to express basic transformations such as

scaling, rotation, and translation.
4. Implement simple procedures that perform transformation and clipping operations on

a simple 2-dimensional image.
5. Discuss the 3-dimensional coordinate system and the changes required to extend 2D

transformation operations to handle transformations in 3D

GV2. Graphic systems [core]
Minimum core coverage time: 1 hour

Topics:
Raster and vector graphics systems
Video display devices
Physical and logical input devices
Issues facing the developer of graphical systems

Learning objectives:
1. Describe the appropriateness of graphics architectures for given applications.
2. Explain the function of various input devices.
3. Compare and contrast the techniques of raster graphics and vector graphics.
4. Use current hardware and software for creating and displaying graphics.
5. Discuss the expanded capabilities of emerging hardware and software for creating and

displaying graphics.

GV3. Graphic communication [elective]
Topics:

Psychodynamics of color and interactions among colors
Modifications of color for vision deficiency
Cultural meaning of different colors
Use of effective pseudo-color palettes for images for specific audiences
Structuring a view for effective understanding
Image modifications for effective video and hardcopy
Use of legends to key information to color or other visual data
Use of text in images to present context and background information
Visual user feedback on graphical operations

Learning objectives:
1. Explain the value of using colors and pseudo-colors.
2. Demonstrate the ability to create effective video and hardcopy images.
3. Identify effective and ineffective examples of communication using graphics.
4. Create effective examples of graphic communication, making appropriate use of

color, legends, text, and/or video.

CC2001 Computer Science volume – 124 –
Final Report (December 15, 2001)

5. Create two effective examples that communicate the same content: one designed for
hardcopy presentation and the other designed for online presentation.

6. Discuss the differences in design criteria for hardcopy and online presentations.

GV4. Geometric modeling [elective]
Topics:

Polygonal representation of 3D objects
Parametric polynomial curves and surfaces
Constructive Solid Geometry (CSG) representation
Implicit representation of curves and surfaces
Spatial subdivision techniques
Procedural models
Deformable models
Subdivision surfaces
Multiresolution modeling
Reconstruction

Learning objectives:
1. Create simple polyhedral models by surface tessellation.
2. Construct CSG models from simple primitives, such as cubes and quadric surfaces.
3. Generate a mesh representation from an implicit surface.
4. Generate a fractal model or terrain using a procedural method.
5. Generate a mesh from data points acquired with a laser scanner.

GV5. Basic rendering [elective]
Topics:

Line generation algorithms (Bresenham)
Font generation: outline vs. bitmap
Light-source and material properties
Ambient, diffuse, and specular reflections
Phong reflection model
Rendering of a polygonal surface; flat, Gouraud, and Phong shading
Texture mapping, bump texture, environment map
Introduction to ray tracing
Image synthesis, sampling techniques, and anti-aliasing

Learning objectives:
1. Explain the operation of the Bresenham algorithm for rendering a line on a pixel-

based display.
2. Explain the concept and applications of each of these techniques.
3. Demonstrate each of these techniques by creating an image using a standard API.
4. Describe how a graphic image has been created.

CC2001 Computer Science volume – 125 –
Final Report (December 15, 2001)

GV6. Advanced rendering [elective]
Topics:

Transport equations
Ray tracing algorithms
Photon tracing
Radiosity for global illumination computation, form factors
Efficient approaches to global illumination
Monte Carlo methods for global illumination
Image-based rendering, panorama viewing, plenoptic function modeling
Rendering of complex natural phenomenon
Non-photorealistic rendering

Learning objectives:
1. Describe several transport equations in detail, noting all comprehensive effects.
2. Describe efficient algorithms to compute radiosity and explain the tradeoffs of

accuracy and algorithmic performance.
3. Describe the impact of meshing schemes.
4. Explain image-based rendering techniques, light fields, and associated topics.

GV7. Advanced techniques [elective]
Topics:

Color quantization
Scan conversion of 2D primitive, forward differencing
Tessellation of curved surfaces
Hidden surface removal methods
Z-buffer and frame buffer, color channels (a channel for opacity)
Advanced geometric modeling techniques

Learning objectives:
1. Describe the techniques identified in this section.
2. Explain how to recognize the graphics techniques used to create a particular image.
3. Implement any of the specified graphics techniques using a primitive graphics system

at the individual pixel level.
4. Use common animation software to construct simple organic forms using metaball

and skeleton.

GV8. Computer animation [elective]
Topics:

Key-frame animation
Camera animation
Scripting system
Animation of articulated structures: inverse kinematics
Motion capture
Procedural animation
Deformation

CC2001 Computer Science volume – 126 –
Final Report (December 15, 2001)

Learning objectives:
1. Explain the spline interpolation method for producing in-between positions and

orientations.
2. Compare and contrast several technologies for motion capture.
3. Use the particle function in common animation software to generate a simple

animation, such as fireworks.
4. Use free-form deformation techniques to create various deformations.

GV9. Visualization [elective]
Topics:

Basic viewing and interrogation functions for visualization
Visualization of vector fields, tensors, and flow data
Visualization of scalar field or height field: isosurface by the marching cube method
Direct volume data rendering: ray-casting, transfer functions, segmentation, hardware
Information visualization: projection and parallel-coordinates methods

Learning objectives:
1. Describe the basic algorithms behind scalar and vector visualization.
2. Describe the tradeoffs of the algorithms in terms of accuracy and performance.
3. Employ suitable theory from signal processing and numerical analysis to explain the

effects of visualization operations.
4. Describe the impact of presentation and user interaction on exploration.

GV10. Virtual reality [elective]
Topics:

Stereoscopic display
Force feedback simulation, haptic devices
Viewer tracking
Collision detection
Visibility computation
Time-critical rendering, multiple levels of details (LOD)
Image-base VR system
Distributed VR, collaboration over computer network
Interactive modeling
User interface issues
Applications in medicine, simulation, and training

Learning objectives:
1. Describe the optical model realized by a computer graphics system to synthesize

stereoscopic view.
2. Describe the principles of different viewer tracking technologies.
3. Explain the principles of efficient collision detection algorithms for convex

polyhedra.
4. Describe the differences between geometry- and image-based virtual reality.
5. Describe the issues of user action synchronization and data consistency in a

networked environment.
6. Determine the basic requirements on interface, hardware, and software configurations

of a VR system for a specified application.

CC2001 Computer Science volume – 127 –
Final Report (December 15, 2001)

GV11. Computer vision [elective]
Topics:

Image acquisition
The digital image and its properties
Image preprocessing
Segmentation (thresholding, edge- and region-based segmentation)
Shape representation and object recognition
Motion analysis
Case studies (object recognition, object tracking)

Learning objectives:
1. Explain the image formation process.
2. Explain the advantages of two and more cameras, stereo vision.
3. Explain various segmentation approaches, along with their characteristics,

differences, strengths, and weaknesses.
4. Describe object recognition based on contour- and region-based shape

representations.
5. Explain differential motion analysis methods.
6. Describe the differences in object tracking methods.

CC2001 Computer Science volume – 128 –
Final Report (December 15, 2001)

Intelligent Systems (IS)
IS1. Fundamental issues in intelligent systems [core]
IS2. Search and constraint satisfaction [core]
IS3. Knowledge representation and reasoning [core]
IS4. Advanced search [elective]
IS5. Advanced knowledge representation and reasoning [elective]
IS6. Agents [elective]
IS7. Natural language processing [elective]
IS8. Machine learning and neural networks [elective]
IS9. AI planning systems [elective]
IS10. Robotics [elective]

The field of artificial intelligence (AI) is concerned with the design and analysis of
autonomous agents. These are software systems and/or physical machines, with sensors
and actuators, embodied for example within a robot or an autonomous spacecraft. An
intelligent system has to perceive its environment, to act rationally towards its assigned
tasks, to interact with other agents and with human beings.

These capabilities are covered by topics such as computer vision, planning and acting,
robotics, multiagents systems, speech recognition, and natural language understanding.
They rely on a broad set of general and specialized knowledge representations and
reasoning mechanisms, on problem solving and search algorithms, and on machine
learning techniques.

Furthermore, artificial intelligence provides a set of tools for solving problems that are
difficult or impractical to solve with other methods. These include heuristic search and
planning algorithms, formalisms for knowledge representation and reasoning, machine
learning techniques, and methods applicable to sensing and action problems such as
speech and language understanding, computer vision, and robotics, among others. The
student needs to be able to determine when an AI approach is appropriate for a given
problem, and to be able to select and implement a suitable AI method.

IS1. Fundamental issues in intelligent systems [core]
Minimum core coverage time: 1 hour

Topics:
History of artificial intelligence
Philosophical questions

– The Turing test
– Searle’s “Chinese Room” thought experiment
– Ethical issues in AI

Fundamental definitions
– Optimal vs. human-like reasoning
– Optimal vs. human-like behavior

Philosophical questions
Modeling the world
The role of heuristics

Learning objectives:
1. Describe the Turing test and the “Chinese Room” thought experiment.
2. Differentiate the concepts of optimal reasoning and human-like reasoning.
3. Differentiate the concepts of optimal behavior and human-like behavior.

CC2001 Computer Science volume – 129 –
Final Report (December 15, 2001)

4. List examples of intelligent systems that depend on models of the world.
5. Describe the role of heuristics and the need for tradeoffs between optimality and

efficiency.

IS2. Search and constraint satisfaction [core]
Minimum core coverage time: 5 hours

Topics:
Problem spaces
Brute-force search (breadth-first, depth-first, depth-first with iterative deepening)
Best-first search (generic best-first, Dijkstra’s algorithm, A*, admissibility of A*)
Two-player games (minimax search, alpha-beta pruning)
Constraint satisfaction (backtracking and local search methods)

Learning objectives:
1. Formulate an efficient problem space for a problem expressed in English by

expressing that problem space in terms of states, operators, an initial state, and a
description of a goal state.

2. Describe the problem of combinatorial explosion and its consequences.
3. Select an appropriate brute-force search algorithm for a problem, implement it, and

characterize its time and space complexities.
4. Select an appropriate heuristic search algorithm for a problem and implement it by

designing the necessary heuristic evaluation function.
5. Describe under what conditions heuristic algorithms guarantee optimal solution.
6. Implement minimax search with alpha-beta pruning for some two-player game.
7. Formulate a problem specified in English as a constraint-satisfaction problem and

implement it using a chronological backtracking algorithm.

IS3. Knowledge representation and reasoning [core]
Minimum core coverage time: 4 hours

Topics:
Review of propositional and predicate logic
Resolution and theorem proving
Nonmonotonic inference
Probabilistic reasoning
Bayes theorem

Learning objectives:
1. Explain the operation of the resolution technique for theorem proving.
2. Explain the distinction between monotonic and nonmonotonic inference.
3. Discuss the advantages and shortcomings of probabilistic reasoning.
4. Apply Bayes theorem to determine conditional probabilities.

CC2001 Computer Science volume – 130 –
Final Report (December 15, 2001)

IS4. Advanced search [elective]
Topics:

Genetic algorithms
Simulated annealing
Local search

Learning objectives:
1. Explain what genetic algorithms are and constrast their effectiveness with the classic

problem-solving and search techniques.
2. Explain how simulated annealing can be used to reduce search complexity and

contrast its operation with classic search techniques.
3. Apply local search techniques to a classic domain.

IS5. Advanced knowledge representation and reasoning [elective]
Topics:

Structured representation
– Frames and objects
– Description logics
– Inheritance systems

Nonmonotonic reasoning
– Nonclassical logics
– Default reasoning
– Belief revision
– Preference logics
– Integration of knowledge sources
– Aggregation of conflicting belief

Reasoning on action and change
– Situation calculus
– Event calculus
– Ramification problems

Temporal and spatial reasoning
Uncertainty

– Probabilistic reasoning
– Bayesian nets
– Fuzzy sets and possibility theory
– Decision theory

Knowledge representation for diagnosis, qualitative representation

Learning objectives:
1. Compare and contrast the most common models used for structured knowledge

representation, highlighting their strengths and weaknesses.
2. Characterize the components of nonmonotonic reasoning and its usefulness as a

representational mechanisms for belief systems.
3. Apply situation and event calculus to problems of action and change.
4. Articulate the distinction between temporal and spatial reasoning, explaining how

they interrelate.
5. Describe and contrast the basic techniques for representing uncertainty.
6. Describe and contrast the basic techniques for diagnosis and qualitative

representation.

CC2001 Computer Science volume – 131 –
Final Report (December 15, 2001)

IS6. Agents [elective]
Topics:

Definition of agents
Successful applications and state-of-the-art agent-based systems
Agent architectures

– Simple reactive agents
– Reactive planners
– Layered architectures
– Example architectures and applications

Agent theory
– Commitments
– Intentions
– Decision-theoretic agents
– Markov decision processes (MDP)

Software agents, personal assistants, and information access
– Collaborative agents
– Information-gathering agents

Believable agents (synthetic characters, modeling emotions in agents)
Learning agents
Multi-agent systems

– Economically inspired multi-agent systems
– Collaborating agents
– Agent teams
– Agent modeling
– Multi-agent learning

Introduction to robotic agents
Mobile agents

Learning objectives:
1. Explain how an agent differs from other categories of intelligent systems.
2. Characterize and contrast the standard agent architectures.
3. Describe the applications of agent theory, to domains such as software agents,

personal assistants, and believable agents.
4. Describe the distinction between agents that learn and those that don’t.
5. Demonstrate using appropriate examples how multi-agent systems support agent

interaction.
6. Describe and contrast robotic and mobile agents.

IS7. Natural language processing [elective]
Topics:

Deterministic and stochastic grammars
Parsing algorithms
Corpus-based methods
Information retrieval
Language translation
Speech recognition

Learning objectives:
1. Define and contrast deterministic and stochastic grammars, providing examples to

show the adequacy of each.

CC2001 Computer Science volume – 132 –
Final Report (December 15, 2001)

2. Identify the classic parsing algorithms for parsing natural language.
3. Defend the need for an established corpus.
4. Give examples of catalog and look up procedures in a corpus-based approach.
5. Articulate the distinction between techniques for information retrieval, language

translation, and speech recognition.

IS8. Machine learning and neural networks [elective]
Topics:

Definition and examples of machine learning
Supervised learning
Learning decision trees
Learning neural networks
Learning belief networks
The nearest neighbor algorithm
Learning theory
The problem of overfitting
Unsupervised learning
Reinforcement learning

Learning objectives:
1. Explain the differences among the three main styles of learning: supervised,

reinforcement, and unsupervised.
2. Implement simple algorithms for supervised learning, reinforcement learning, and

unsupervised learning.
3. Determine which of the three learning styles is appropriate to a particular problem

domain.
4. Compare and contrast each of the following techniques, providing examples of when

each strategy is superior: decision trees, neural networks, and belief networks..
5. Implement a simple learning system using decision trees, neural networks and/or

belief networks, as appropriate.
6. Characterize the state of the art in learning theory, including its achievements and its

shortcomings.
7. Explain the nearest neighbor algorithm and its place within learning theory.
8. Explain the problem of overfitting, along with techniques for detecting and managing

the problem.

IS9. AI planning systems [elective]
Topics:

Definition and examples of planning systems
Planning as search
Operator-based planning
Propositional planning
Extending planning systems (case-based, learning, and probabilistic systems)
Static world planning systems
Planning and execution
Planning and robotics

CC2001 Computer Science volume – 133 –
Final Report (December 15, 2001)

Learning objectives:
1. Define the concept of a planning system.
2. Explain how planning systems differ from classical search techniques.
3. Articulate the differences between planning as search, operator-based planning, and

propositional planning, providing examples of domains where each is most
applicable.

4. Define and provide examples for each of the following techniques: case-based,
learning, and probablistic planning.

5. Compare and contrast static world planning systems with those need dynamic
execution.

6. Explain the impact of dynamic planning on robotics.

IS10. Robotics [elective]
Topics:

Overview
– State-of-the-art robot systems
– Planning vs. reactive control
– Uncertainty in control
– Sensing
– World models

Configuration space
Planning
Sensing
Robot programming
Navigation and control

Learning objectives:
1. Outline the potential and limitations of today’s state-of-the-art robot systems.
2. Implement configuration space algorithms for a 2D robot and complex polygons.
3. Implement simple motion planning algorithms.
4. Explain the uncertainties associated with sensors and how to deal with those

uncertainties.
5. Design a simple control architecture.
6. Describe various strategies for navigation in unknown environments, including the

strengths and shortcomings of each.
7. Describe various strategies for navigation with the aid of landmarks, including the

strengths and shortcomings of each.

CC2001 Computer Science volume – 134 –
Final Report (December 15, 2001)

Information Management (IM)
IM1. Information models and systems [core]
IM2. Database systems [core]
IM3. Data modeling [core]
IM4. Relational databases [elective]
IM5. Database query languages [elective]
IM6. Relational database design [elective]
IM7. Transaction processing [elective]
IM8. Distributed databases [elective]
IM9. Physical database design [elective]
IM10. Data mining [elective]
IM11. Information storage and retrieval [elective]
IM12. Hypertext and hypermedia [elective]
IM13. Multimedia information and systems [elective]
IM14. Digital libraries [elective]

Information Management (IM) plays a critical role in almost all areas where computers
are used. This area includes the capture, digitization, representation, organization,
transformation, and presentation of information; algorithms for efficient and effective
access and updating of stored information, data modeling and abstraction, and physical
file storage techniques. It also encompasses information security, privacy, integrity, and
protection in a shared environment. The student needs to be able to develop conceptual
and physical data models, determine what IM methods and techniques are appropriate for
a given problem, and be able to select and implement an appropriate IM solution that
reflects all suitable constraints, including scalability and usability.

IM1. Information models and systems [core]
Minimum core coverage time: 3 hours

Topics:
History and motivation for information systems
Information storage and retrieval (IS&R)
Information management applications
Information capture and representation
Analysis and indexing
Search, retrieval, linking, navigation
Information privacy, integrity, security, and preservation
Scalability, efficiency, and effectiveness

Learning objectives:
1. Compare and contrast information with data and knowledge.
2. Summarize the evolution of information systems from early visions up through

modern offerings, distinguishing their respective capabilities and future potential.
3. Critique/defend a small- to medium-size information application with regard to its

satisfying real user information needs.
4. Describe several technical solutions to the problems related to information privacy,

integrity, security, and preservation.
5. Explain measures of efficiency (throughput, response time) and effectiveness (recall,

precision).
6. Describe approaches to ensure that information systems can scale from the individual

to the global.

CC2001 Computer Science volume – 135 –
Final Report (December 15, 2001)

IM2. Database systems [core]
Minimum core coverage time: 3 hours

Topics:
History and motivation for database systems
Components of database systems
DBMS functions
Database architecture and data independence
Use of a database query language

Learning objectives:
1. Explain the characteristics that distinguish the database approach from the traditional

approach of programming with data files.
2. Cite the basic goals, functions, models, components, applications, and social impact

of database systems.
3. Describe the components of a database system and give examples of their use.
4. Identify major DBMS functions and describe their role in a database system.
5. Explain the concept of data independence and its importance in a database system.
6. Use a query language to elicit information from a database.

IM3. Data modeling [core]
Minimum core coverage time: 4 hours

Topics:
Data modeling
Conceptual models (including entity-relationship and UML)
Object-oriented model
Relational data model

Learning objectives:
1. Categorize data models based on the types of concepts that they provide to describe

the database structure—that is, conceptual data model, physical data model, and
representational data model.

2. Describe the modeling concepts and notation of the entity-relationship model and
UML, including their use in data modeling.

3. Describe the main concepts of the OO model such as object identity, type
constructors, encapsulation, inheritance, polymorphism, and versioning.

4. Define the fundamental terminology used in the relational data model .
5. Describe the basic principles of the relational data model.
6. Illustrate the modeling concepts and notation of the relational data model.

IM4. Relational databases [elective]
Topics:

Mapping conceptual schema to a relational schema
Entity and referential integrity
Relational algebra and relational calculus

CC2001 Computer Science volume – 136 –
Final Report (December 15, 2001)

Learning objectives:
1. Prepare a relational schema from a conceptual model developed using the entity-

relationship model
2. Explain and demonstrate the concepts of entity integrity constraint and referential

integrity constraint (including definition of the concept of a foreign key).
3. Demonstrate use of the relational algebra operations from mathematical set theory

(union, intersection, difference, and cartesian product) and the relational algebra
operations developed specifically for relational databases (select, product, join, and
division).

4. Demonstrate queries in the relational algebra.
5. Demonstrate queries in the tuple relational calculus.

IM5. Database query languages [elective]
Topics:

Overview of database languages
SQL (data definition, query formulation, update sublanguage, constraints, integrity)
Query optimization
QBE and 4th-generation environments
Embedding non-procedural queries in a procedural language
Introduction to Object Query Language

Learning objectives:
1. Create a relational database schema in SQL that incorporates key, entity integrity, and

referential integrity constraints.
2. Demonstrate data definition in SQL and retrieving information from a database using

the SQL SELECT statement.
3. Evaluate a set of query processing strategies and select the optimal strategy.
4. Create a non-procedural query by filling in templates of relations to construct an

example of the desired query result.
5. Embed object-oriented queries into a stand-alone language such as C++ or Java (e.g.,

SELECT Col.Method() FROM Object).

IM6. Relational database design [elective]
Topics:

Database design
Functional dependency
Normal forms (1NF, 2NF, 3NF, BCNF)
Multivalued dependency (4NF)
Join dependency (PJNF, 5NF)
Representation theory

Learning objectives:
1. Determine the functional dependency between two or more attributes that are a subset

of a relation.
2. Describe what is meant by 1NF, 2NF, 3NF, and BCNF.
3. Identify whether a relation is in 1NF, 2NF, 3NF, or BCNF.

CC2001 Computer Science volume – 137 –
Final Report (December 15, 2001)

4. Normalize a 1NF relation into a set of 3NF (or BCNF) relations and denormalize a
relational schema.

5. Explain the impact of normalization on the efficiency of database operations,
especially query optimization.

6. Describe what is a multivalued dependency and what type of constraints it specifies.
7. Explain why 4NF is useful in schema design.

IM7. Transaction processing [elective]
Topics:

Transactions
Failure and recovery
Concurrency control

Learning objectives:
1. Create a transaction by embedding SQL into an application program.
2. Explain the concept of implicit commits.
3. Describe the issues specific to efficient transaction execution.
4. Explain when and why rollback is needed and how logging assures proper rollback.
5. Explain the effect of different isolation levels on the concurrency control

mechanisms.
6. Choose the proper isolation level for implementing a specified transaction protocol.

IM8. Distributed databases [elective]
Topics:

Distributed data storage
Distributed query processing
Distributed transaction model
Concurrency control
Homogeneous and heterogeneous solutions
Client-server

Learning objectives:
1. Explain the techniques used for data fragmentation, replication, and allocation during

the distributed database design process.
2. Evaluate simple strategies for executing a distributed query to select the strategy that

minimizes the amount of data transfer.
3. Explain how the two-phase commit protocol is used to deal with committing a

transaction that accesses databases stored on multiple nodes.
4. Describe distributed concurrency control based on the distinguished copy techniques

and the voting method.
5. Describe the three levels of software in the client-server model.

CC2001 Computer Science volume – 138 –
Final Report (December 15, 2001)

IM9. Physical database design [elective]
Topics:

Storage and file structure
Indexed files
Hashed files
Signature files
B-trees
Files with dense index
Files with variable length records
Database efficiency and tuning

Learning objectives:
1. Explain the concepts of records, record types, and files, as well as the different

techniques for placing file records on disk.
2. Give examples of the application of primary, secondary, and clustering indexes.
3. Distinguish between a nondense index and a dense index.
4. Implement dynamic multilevel indexes using B-trees.
5. Explain the theory and application of internal and external hashing techniques.
6. Use hashing to facilitate dynamic file expansion.
7. Describe the relationships among hashing, compression, and efficient database

searches.
8. Evaluate costs and benefits of various hashing schemes.
9. Explain how physical database design affects database transaction efficiency.

IM10. Data mining [elective]
Topics:

The usefulness of data mining
Associative and sequential patterns
Data clustering
Market basket analysis
Data cleaning
Data visualization

Learning objectives:
1. Compare and contrast different conceptions of data mining as evidenced in both

research and application.
2. Explain the role of finding associations in commercial market basket data.
3. Characterize the kinds of patterns that can be discovered by association rule mining.
4. Describe how to extend a relational system to find patterns using association rules.
5. Evaluate methodological issues underlying the effective application of data mining.
6. Identify and characterize sources of noise, redundancy, and outliers in presented data.
7. Identify mechanisms (on-line aggregation, anytime behavior, interactive

visualization) to close the loop in the data mining process.
8. Describe why the various close-the-loop processes improve the effectiveness of data

mining.

CC2001 Computer Science volume – 139 –
Final Report (December 15, 2001)

IM11. Information storage and retrieval [elective]
Topics:

Characters, strings, coding, text
Documents, electronic publishing, markup, and markup languages
Tries, inverted files, PAT trees, signature files, indexing
Morphological analysis, stemming, phrases, stop lists
Term frequency distributions, uncertainty, fuzziness, weighting
Vector space, probabilistic, logical, and advanced models
Information needs, relevance, evaluation, effectiveness
Thesauri, ontologies, classification and categorization, metadata
Bibliographic information, bibliometrics, citations
Routing and (community) filtering
Search and search strategy, information seeking behavior, user modeling, feedback
Information summarization and visualization
Integration of citation, keyword, classification scheme, and other terms
Protocols and systems (including Z39.50, OPACs, WWW engines, research systems)

Learning objectives:
1. Explain basic information storage and retrieval concepts.
2. Describe what issues are specific to efficient information retrieval.
3. Give applications of alternative search strategies and explain why the particular

search strategy is appropriate for the application.
4. Perform Internet-based research.
5. Design and implement a small to medium size information storage and retrieval

system.

IM12. Hypertext and hypermedia [elective]
Topics:

Hypertext models (early history, web, Dexter, Amsterdam, HyTime)
Link services, engines, and (distributed) hypertext architectures
Nodes, composites, and anchors
Dimensions, units, locations, spans
Browsing, navigation, views, zooming
Automatic link generation
Presentation, transformations, synchronization
Authoring, reading, and annotation
Protocols and systems (including web, HTTP)

Learning objectives:
1. Summarize the evolution of hypertext and hypermedia models from early versions up

through current offerings, distinguishing their respective capabilities and limitations.
2. Explain basic hypertext and hypermedia concepts.
3. Demonstrate a fundamental understanding of information presentation,

transformation, and synchronization.
4. Compare and contrast hypermedia delivery based on protocols and systems used.
5. Design and implement web-enabled information retrieval applications using

appropriate authoring tools.

CC2001 Computer Science volume – 140 –
Final Report (December 15, 2001)

IM13. Multimedia information and systems [elective]
Topics:

Devices, device drivers, control signals and protocols, DSPs
Applications, media editors, authoring systems, and authoring
Streams/structures, capture/represent/transform, spaces/domains, compression/coding
Content-based analysis, indexing, and retrieval of audio, images, and video
Presentation, rendering, synchronization, multi-modal integration/interfaces
Real-time delivery, quality of service, audio/video conferencing, video-on-demand

Learning objectives:
1. Describe the media and supporting devices commonly associated with multimedia

information and systems.
2. Explain basic multimedia presentation concepts.
3. Demonstrate the use of content-based information analysis in a multimedia

information system.
4. Critique multimedia presentations in terms of their appropriate use of audio, video,

graphics, color, and other information presentation concepts.
5. Implement a multimedia application using a commercial authoring system.

IM14. Digital libraries [elective]
Topics:

Digitization, storage, and interchange
Digital objects, composites, and packages
Metadata, cataloging, author submission
Naming, repositories, archives
Spaces (conceptual, geographical, 2/3D, VR)
Architectures (agents, buses, wrappers/mediators), interoperability
Services (searching, linking, browsing, and so forth)
Intellectual property rights management, privacy, protection (watermarking)
Archiving and preservation, integrity

Learning objectives:
1. Explain the underlying technical concepts in building a digital library.
2. Describe the basic service requirements for searching, linking, and browsing.
3. Critique scenarios involving appropriate and inappropriate use of a digital library, and

determine the social, legal, and economic consequences for each scenario.
4. Describe some of the technical solutions to the problems related to archiving and

preserving information in a digital library.
5. Design and implement a small digital library.

CC2001 Computer Science volume – 141 –
Final Report (December 15, 2001)

Social and Professional Issues (SP)
SP1. History of computing [core]
SP2. Social context of computing [core]
SP3. Methods and tools of analysis [core]
SP4. Professional and ethical responsibilities [core]
SP5. Risks and liabilities of computer-based systems [core]
SP6. Intellectual property [core]
SP7. Privacy and civil liberties [core]
SP8. Computer crime [elective]
SP9. Economic issues in computing [elective]
SP10. Philosophical frameworks [elective]

Although technical issues are obviously central to any computing curriculum, they do not
by themselves constitute a complete educational program in the field. Students must also
develop an understanding of the social and professional context in which computing is
done.

This need to incorporate the study of social issues into the curriculum was recognized in
the following excerpt from Computing Curricula 1991 [Tucker91]:

Undergraduates also need to understand the basic cultural, social, legal, and
ethical issues inherent in the discipline of computing. They should understand
where the discipline has been, where it is, and where it is heading. They should
also understand their individual roles in this process, as well as appreciate the
philosophical questions, technical problems, and aesthetic values that play an
important part in the development of the discipline.

Students also need to develop the ability to ask serious questions about the social
impact of computing and to evaluate proposed answers to those questions.
Future practitioners must be able to anticipate the impact of introducing a given
product into a given environment. Will that product enhance or degrade the
quality of life? What will the impact be upon individuals, groups, and
institutions?

Finally, students need to be aware of the basic legal rights of software and
hardware vendors and users, and they also need to appreciate the ethical values
that are the basis for those rights. Future practitioners must understand the
responsibility that they will bear, and the possible consequences of failure. They
must understand their own limitations as well as the limitations of their tools.
All practitioners must make a long-term commitment to remaining current in
their chosen specialties and in the discipline of computing as a whole.

The material in this knowledge area is best covered through a combination of one
required course along with short modules in other courses. On the one hand, some units
listed as core—in particular, SP2, SP3, SP4, and SP6—do not readily lend themselves to
being covered in other traditional courses. Without a standalone course, it is difficult to
cover these topics appropriately. On the other hand, if ethical considerations are covered
only in the standalone course and not “in context,” it will reinforce the false notion that
technical processes are void of ethical issues. Thus it is important that several traditional
courses include modules that analyze ethical considerations in the context of the technical
subject matter of the course. Courses in areas such as software engineering, databases,
computer networks, and introduction to computing provide obvious context for analysis
of ethical issues. However, an ethics-related module could be developed for almost any
course in the curriculum. It would be explicitly against the spirit of the recommendations
to have only a standalone course. Running through all of the issues in this area is the

CC2001 Computer Science volume – 142 –
Final Report (December 15, 2001)

need to speak to the computer practitioner’s responsibility to proactively address these
issues by both moral and technical actions.

The ethical issues discussed in any class should be directly related to and arise naturally
from the subject matter of that class. Examples include a discussion in the database
course of data aggregation or data mining, or a discussion in the software engineering
course of the potential conflicts between obligations to the customer and obligations to
the user and others affected by their work. Programming assignments built around
applications such as controlling the movement of a laser during eye surgery can help to
address the professional, ethical and social impacts of computing.

There is an unresolved pedagogical conflict between having the core course at the lower
(freshman-sophomore) level versus the upper (junior-senior) level. Having the course at
the lower level

1. Allows for coverage of methods and tools of analysis (SP3) prior to analyzing ethical
issues in the context of different technical areas

2. Assures that students who drop out early to enter the workforce will still be
introduced to some professional and ethical issues.

On the other hand, placing the course too early may lead to the following problems:

1. Lower-level students may not have the technical knowledge and intellectual maturity
to support in-depth ethical analysis. Without basic understanding of technical
alternatives, it is difficult to consider their ethical implications.

2. Students need a certain level of maturity and sophistication to appreciate the
background and issues involved. For that reason, students should have completed at
least the discrete mathematics course and the second computer science course. Also,
if students take a technical writing course, it should be a prerequisite or corequisite
for the required course in the SP area.

3. Some programs may wish to use the course as a “capstone” experience for seniors.

Although items SP2 and SP3 are listed with a number of hours associated, they are
fundamental to all the other topics. Thus, when covering the other areas, instructors
should continually be aware of the social context issues and the ethical analysis skills. In
practice, this means that the topics in SP2 and SP3 will be continually reinforced as the
material in the other areas is covered.

SP1. History of computing [core]
Minimum core coverage time: 1 hour

Topics:
Prehistory—the world before 1946
History of computer hardware, software, networking
Pioneers of computing

Learning objectives:
1. List the contributions of several pioneers in the computing field.
2. Compare daily life before and after the advent of personal computers and the Internet.
3. Identify significant continuing trends in the history of the computing field.

CC2001 Computer Science volume – 143 –
Final Report (December 15, 2001)

SP2. Social context of computing [core]
Minimum core coverage time: 3 hours

Topics:
Introduction to the social implications of computing
Social implications of networked communication
Growth of, control of, and access to the Internet
Gender-related issues
International issues

Learning objectives:
1. Interpret the social context of a particular implementation.
2. Identify assumptions and values embedded in a particular design.
3. Evaluate a particular implementation through the use of empirical data.
4. Describe positive and negative ways in which computing alters the modes of

interaction between people.
5. Explain why computing/network access is restricted in some countries.

SP3. Methods and tools of analysis [core]
Minimum core coverage time: 2 hours

Topics:
Making and evaluating ethical arguments
Identifying and evaluating ethical choices
Understanding the social context of design
Identifying assumptions and values

Learning objectives:
1. Analyze an argument to identify premises and conclusion.
2. Illustrate the use of example, analogy, and counter-analogy in ethical argument.
3. Detect use of basic logical fallacies in an argument.
4. Identify stakeholders in an issue and our obligations to them.
5. Articulate the ethical tradeoffs in a technical decision.

SP4. Professional and ethical responsibilities [core]
Minimum core coverage time: 3 hours

Topics:
Community values and the laws by which we live
The nature of professionalism
Various forms of professional credentialing and the advantages and disadvantages
The role of the professional in public policy
Maintaining awareness of consequences
Ethical dissent and whistle-blowing
Codes of ethics, conduct, and practice (IEEE, ACM, SE, AITP, and so forth)
Dealing with harassment and discrimination
“Acceptable use” policies for computing in the workplace

CC2001 Computer Science volume – 144 –
Final Report (December 15, 2001)

Learning objectives:
1. Identify progressive stages in a whistle-blowing incident.
2. Specify the strengths and weaknesses of relevant professional codes as expressions of

professionalism and guides to decision-making.
3. Identify ethical issues that arise in software development and determine how to

address them technically and ethically.
4. Develop a computer use policy with enforcement measures.
5. Analyze a global computing issue, observing the role of professionals and

government officials in managing the problem.
6. Evaluate the professional codes of ethics from the ACM, the IEEE Computer Society,

and other organizations.

SP5. Risks and liabilities of computer-based systems [core]
Minimum core coverage time: 2 hours

Topics:
Historical examples of software risks (such as the Therac-25 case)
Implications of software complexity
Risk assessment and management

Learning objectives:
1. Explain the limitations of testing as a means to ensure correctness.
2. Describe the differences between correctness, reliability, and safety.
3. Discuss the potential for hidden problems in reuse of existing components.
4. Describe current approaches to managing risk, and characterize the strengths and

shortcomings of each.

SP6. Intellectual property [core]
Minimum core coverage time: 3 hours

Topics:
Foundations of intellectual property
Copyrights, patents, and trade secrets
Software piracy
Software patents
Transnational issues concerning intellectual property

Learning objectives:
1. Distinguish among patent, copyright, and trade secret protection.
2. Discuss the legal background of copyright in national and international law.
3. Explain how patent and copyright laws may vary internationally.
4. Outline the historical development of software patents.
5. Discuss the consequences of software piracy on software developers and the role of

relevant enforcement organizations.

CC2001 Computer Science volume – 145 –
Final Report (December 15, 2001)

SP7. Privacy and civil liberties [core]
Minimum core coverage time: 2 hours

Topics:
Ethical and legal basis for privacy protection
Privacy implications of massive database systems
Technological strategies for privacy protection
Freedom of expression in cyberspace
International and intercultural implications

Learning objectives:
1. Summarize the legal bases for the right to privacy and freedom of expression in one’s

own nation and how those concepts vary from country to country.
2. Describe current computer-based threats to privacy.
3. Explain how the Internet may change the historical balance in protecting freedom of

expression.
4. Explain both the disadvantages and advantages of free expression in cyberspace.
5. Describe trends in privacy protection as exemplified in technology.

SP8. Computer crime [elective]
Topics:

History and examples of computer crime
“Cracking” (“hacking”) and its effects
Viruses, worms, and Trojan horses
Crime prevention strategies

Learning objectives:
1. Outline the technical basis of viruses and denial-of-service attacks.
2. Enumerate techniques to combat “cracker” attacks.
3. Discuss several different “cracker” approaches and motivations.
4. Identify the professional’s role in security and the tradeoffs involved.

SP9. Economic issues in computing [elective]
Topics:

Monopolies and their economic implications
Effect of skilled labor supply and demand on the quality of computing products
Pricing strategies in the computing domain
Differences in access to computing resources and the possible effects thereof

Learning objectives:
1. Summarize the rationale for antimonopoly efforts.
2. Describe several ways in which the information technology industry is affected by

shortages in the labor supply.
3. Suggest and defend ways to address limitations on access to computing.
4. Outline the evolution of pricing strategies for computing goods and services.

CC2001 Computer Science volume – 146 –
Final Report (December 15, 2001)

SP10. Philosophical frameworks [elective]
Topics:

Philosophical frameworks, particularly utilitarianism and deontological theories
Problems of ethical relativism
Scientific ethics in historical perspective
Differences in scientific and philosophical approaches

Learning objectives:
1. Summarize the basic concepts of relativism, utilitarianism, and deontological

theories.
2. Recognize the distinction between ethical theory and professional ethics.
3. Identify the weaknesses of the “hired agent” approach, strict legalism, naïve egoism,

and naïve relativism as ethical frameworks.

CC2001 Computer Science volume – 147 –
Final Report (December 15, 2001)

Software Engineering (SE)
SE1. Software design [core]
SE2. Using APIs [core]
SE3. Software tools and environments [core]
SE4. Software processes [core]
SE5. Software requirements and specifications [core]
SE6. Software validation [core]
SE7. Software evolution [core]
SE8. Software project management [core]
SE9. Component-based computing [elective]
SE10. Formal methods [elective]
SE11. Software reliability [elective]
SE12. Specialized systems development [elective]

Software engineering is the discipline concerned with the application of theory,
knowledge, and practice for effectively and efficiently building software systems that
satisfy the requirements of users and customers. Software engineering is applicable to
small, medium, and large-scale systems. It encompasses all phases of the life cycle of a
software system. The life cycle includes requirement analysis and specification, design,
construction, testing, and operation and maintenance.

Software engineering employs engineering methods, processes, techniques, and
measurement. It benefits from the use of tools for managing software development;
analyzing and modeling software artifacts; assessing and controlling quality; and for
ensuring a disciplined, controlled approach to software evolution and reuse. Software
development, which can involve an individual developer or a team of developers, requires
choosing the tools, methods, and approaches that are most applicable for a given
development environment.

The elements of software engineering are applicable to the development of software in
any computing application domain where professionalism, quality, schedule, and cost are
important in producing a software system.

SE1. Software design [core]
Minimum core coverage time: 8 hours

Topics:
Fundamental design concepts and principles
Design patterns
Software architecture
Structured design
Object-oriented analysis and design
Component-level design
Design for reuse

Learning objectives:
1. Discuss the properties of good software design.
2. Compare and contrast object-oriented analysis and design with structured analysis

and design.
3. Evaluate the quality of multiple software designs based on key design principles and

concepts.

CC2001 Computer Science volume – 148 –
Final Report (December 15, 2001)

4. Select and apply appropriate design patterns in the construction of a software
application.

5. Create and specify the software design for a medium-size software product using a
software requirement specification, an accepted program design methodology (e.g.,
structured or object-oriented), and appropriate design notation.

6. Conduct a software design review using appropriate guidelines.
7. Evaluate a software design at the component level.
8. Evaluate a software design from the perspective of reuse.

SE2. Using APIs [core]
Minimum core coverage time: 5 hours

Topics:
API programming
Class browsers and related tools
Programming by example
Debugging in the API environment
Introduction to component-based computing

Learning objectives:
1. Explain the value of application programming interfaces (APIs) in software

development.
1. Use class browsers and related tools during the development of applications using

APIs.
2. Design, implement, test, and debug programs that use large-scale API packages.

SE3. Software tools and environments [core]
Minimum core coverage time: 3 hours

Topics:
Programming environments
Requirements analysis and design modeling tools
Testing tools
Configuration management tools
Tool integration mechanisms

Learning objectives:
1. Select, with justification, an appropriate set of tools to support the development of a

range of software products.
2. Analyze and evaluate a set of tools in a given area of software development (e.g.,

management, modeling, or testing).
3. Demonstrate the capability to use a range of software tools in support of the

development of a software product of medium size.

CC2001 Computer Science volume – 149 –
Final Report (December 15, 2001)

SE4. Software processes [core]
Minimum core coverage time: 2 hours

Topics:
Software life-cycle and process models
Process assessment models
Software process metrics

Learning objectives:
1. Explain the software life cycle and its phases including the deliverables that are

produced.
2. Select, with justification the software development models most appropriate for the

development and maintenance of a diverse range of software products.
3. Explain the role of process maturity models.
4. Compare the traditional waterfall model to the incremental model, the object-oriented

model, and other apropriate models.
5. For each of various software project scenarios, describe the project’s place in the

software life cycle, identify the particular tasks that should be performed next, and
identify metrics appropriate to those tasks.

SE5. Software requirements and specifications [core]
Minimum core coverage time: 4 hours

Topics:
Requirements elicitation
Requirements analysis modeling techniques
Functional and nonfunctional requirements
Prototyping
Basic concepts of formal specification techniques

Learning objectives:
1. Apply key elements and common methods for elicitation and analysis to produce a set

of software requirements for a medium-sized software system.
2. Discuss the challenges of maintaining legacy software.
3. Use a common, non-formal method to model and specify (in the form of a

requirements specification document) the requirements for a medium-size software
system.

4. Conduct a review of a software requirements document using best practices to
determine the quality of the document.

5. Translate into natural language a software requirements specification written in a
commonly used formal specification language.

CC2001 Computer Science volume – 150 –
Final Report (December 15, 2001)

SE6. Software validation [core]
Minimum core coverage time: 3 hours

Topics:
Validation planning
Testing fundamentals, including test plan creation and test case generation
Black-box and white-box testing techniques
Unit, integration, validation, and system testing
Object-oriented testing
Inspections

Learning objectives:
1. Distinguish between program validation and verification.
2. Describe the role that tools can play in the validation of software.
3. Distinguish between the different types and levels of testing (unit, integration,

systems, and acceptance) for medium-size software products.
4. Create, evaluate, and implement a test plan for a medium-size code segment.
5. Undertake, as part of a team activity, an inspection of a medium-size code segment.
6. Discuss the issues involving the testing of object-oriented software.

SE7. Software evolution [core]
Minimum core coverage time: 3 hours

Topics:
Software maintenance
Characteristics of maintainable software
Reengineering
Legacy systems
Software reuse

Learning objectives:
1. Identify the principal issues associated with software evolution and explain their

impact on the software life cycle.
2. Discuss the challenges of maintaining legacy systems and the need for reverse

engineering.
3. Outline the process of regression testing and its role in release management.
4. Estimate the impact of a change request to an existing product of medium size.
5. Develop a plan for re-engineering a medium-sized product in response to a change

request.
6. Discuss the advantages and disadvantages of software reuse.
7. Exploit opportunities for software reuse in a given context.

CC2001 Computer Science volume – 151 –
Final Report (December 15, 2001)

SE8. Software project management [core]
Minimum core coverage time: 3 hours

Topics:
Team management

– Team processes
– Team organization and decision-making
– Roles and responsibilities in a software team
– Role identification and assignment
– Project tracking
– Team problem resolution

Project scheduling
Software measurement and estimation techniques
Risk analysis
Software quality assurance
Software configuration management
Project management tools

Learning objectives:
1. Demonstrate through involvement in a team project the central elements of team

building and team management.
2. Prepare a project plan for a software project that includes estimates of size and effort,

a schedule, resource allocation, configuration control, change management, and
project risk identification and management.

3. Compare and contrast the different methods and techniques used to assure the quality
of a software product.

SE9. Component-based computing [elective]
Topics:

Fundamentals
– The definition and nature of components
– Components and interfaces
– Interfaces as contracts
– The benefits of components

Basic techniques
– Component design and assembly
– Relationship with the client-server model and with patterns
– Use of objects and object lifecycle services
– Use of object brokers
– Marshalling

Applications (including the use of mobile components)
Architecture of component-based systems
Component-oriented design
Event handling: detection, notification, and response
Middleware

– The object-oriented paradigm within middleware
– Object request brokers
– Transaction processing monitors
– Workflow systems
– State-of-the-art tools

CC2001 Computer Science volume – 152 –
Final Report (December 15, 2001)

Learning objectives:
1. Explain and apply recognized principles to the building of high-quality software

components.
2. Discuss and select an architecture for a component-based system suitable for a given

scenario.
3. Identify the kind of event handling implemented in one or more given APIs.
4. Explain the role of objects in middleware systems and the relationship with

components.
5. Apply component-oriented approaches to the design of a range of software including

those required for concurrency and transactions, reliable communication services,
database interaction including services for remote query and database management,
secure communication and access.

SE10. Formal methods [elective]
Topics:

Formal methods concepts
Formal specification languages
Executable and non-executable specifications
Pre and post assertions
Formal verification

Learning objectives:
1. Apply formal verification techniques to software segments with low complexity.
2. Discuss the role of formal verification techniques in the context of software validation

and testing.
3. Explain the potential benefits and drawbacks of using formal specification languages.
4. Create and evaluate pre- and post-assertions for a variety of situations ranging from

simple through complex.
5. Using a common formal specification language, formulate the specification of a

simple software system and demonstrate the benefits from a quality perspective.

SE11. Software reliability [elective]
Topics:

Software reliability models
Redundancy and fault tolerance
Defect classification
Probabilistic methods of analysis

Learning objectives:
1. Demonstrate the ability to apply multiple methods to develop reliability estimates for

a software system.
2. Identify and apply redundancy and fault tolerance for a medium-sized application.
3. Explain the problems that exist in achieving very high levels of reliability.
4. Identify methods that will lead to the realization of a software architecture that

achieves a specified reliability level.

CC2001 Computer Science volume – 153 –
Final Report (December 15, 2001)

SE12. Specialized systems development [elective]
Topics:

Real-time systems
Client-server systems
Distributed systems
Parallel systems
Web-based systems
High-integrity systems

Learning objectives:
1. Identify and discuss different specialized systems.
2. Discuss life cycle and software process issues in the context of software systems

designed for a specialized context.
3. Select, with appropriate justification, approaches that will result in the efficient and

effective development and maintenance of specialized software systems.
4. Given a specific context and a set of related professional issues, discuss how a

software engineer involved in the development of specialized systems should respond
to those issues.

5. Outline the central technical issues associated with the implementation of specialized
systems development.

CC2001 Computer Science volume – 154 –
Final Report (December 15, 2001)

Computational Science and Numerical Methods (CN)
CN1. Numerical analysis [elective]
CN2. Operations research [elective]
CN3. Modeling and simulation [elective]
CN4. High-performance computing [elective]

From the earliest days of the discipline, numerical methods and the techniques of
scientific computing have constituted a major area of computer science research. As
computers increase in their problem-solving power, this area—like much of the
discipline—has grown in both breadth and importance. At the end of the millennium,
scientific computing stands as an intellectual discipline in its own right, closely related to
but nonetheless distinct from computer science.

Although courses in numerical methods and scientific computing are extremely valuable
components of an undergraduate program in computer science, the CC2001 Task Force
believes that none of the topics in this area represent core knowledge. From our surveys
of curricula and interaction with the computer science education community, we are
convinced no consensus exists that this material is essential for all CS undergraduates. It
remains a vital part of the discipline, but need not be a part of every program.

For those who choose to pursue it, this area offers exposure to many valuable ideas and
techniques, including precision of numerical representation, error analysis, numerical
techniques, parallel architectures and algorithms, modeling and simulation, and scientific
visualization. At the same time, students who take courses in this area have an
opportunity to apply these techniques in a wide range of application areas, such as the
following:

• Molecular dynamics
• Fluid dynamics
• Celestial mechanics
• Economic forecasting
• Optimization problems
• Structural analysis of materials
• Bioinformatics
• Computational biology
• Geologic modeling
• Computerized tomography

Each of the units in this area corresponds to a full-semester course at most institutions.
The level of specification of the topic descriptions and the learning objectives is therefore
different from that used in other areas in which the individual units typically require
smaller blocks of time.

CN1. Numerical analysis [elective]
Topics:

Floating-point arithmetic
Error, stability, convergence
Taylor’s series
Iterative solutions for finding roots (Newton’s Method)
Curve fitting; function approximation

CC2001 Computer Science volume – 155 –
Final Report (December 15, 2001)

Numerical differentiation and integration (Simpson’s Rule)
Explicit and implicit methods
Differential equations (Euler’s Method)
Linear algebra
Finite differences

Learning objectives:
1. Compare and contrast the numerical analysis techniques presented in this unit.
2. Define error, stability, machine precision concepts. and the inexactness of

computational approximations.
3. Identify the sources of inexactness in computational approximations.
4. Design, code, test, and debug programs that implement numerical methods.

CN2. Operations research [elective]
Topics:

Linear programming
– Integer programming
– The Simplex method

Probablistic modeling
Queueing theory

– Petri nets
– Markov models and chains

Optimization
Network analysis and routing algorithms
Prediction and estimation

– Decision analysis
– Forecasting
– Risk management
– Econometrics, microeconomics
– Sensitivity analysis

Dynamic programming
Sample applications
Software tools

Learning objectives:
1. Apply the fundamental techniques of operations research.
2. Describe several established techniques for prediction and estimation.
3. Design, code, test, and debug application programs to solve problems in the domain

of operations research.

CN3. Modeling and simulation [elective]
Topics:

Random numbers
– Pseudorandom number generation and testing
– Monte Carlo methods
– Introduction to distribution functions

Simulation modeling
– Discrete-event simulation
– Continuous simulation

CC2001 Computer Science volume – 156 –
Final Report (December 15, 2001)

Verification and validation of simulation models
– Input analysis
– Output analysis

Queueing theory models
Sample applications

Learning objectives:
1. Discuss the fundamental concepts of computer simulation.
2. Evaluate models for computer simulation.
3. Compare and contrast methods for random number generation.
4. Design, code, test, and debug simulation programs.

CN4. High-performance computing [elective]
Topics:

Introduction to high-performance computing
– History and importance of computational science
– Overview of application areas
– Review of required skills

High-performance computing
– Processor architectures
– Memory systems for high performance
– Input/output devices
– Pipelining
– Parallel languages and architectures

Scientific visualization
– Presentation of results
– Data formats
– Visualization tools and packages

Sample problems
– Ocean and atmosphere models
– Seismic wave propagation
– N-body systems (the Barnes-Hut algorithm)
– Chemical reactions
– Phase transitions
– Fluid flow

Learning objectives:
1. Recognize problem areas where computational modeling enhances current research

methods.
2. Compare and contrast architectures for scientific and parallel computing, recognizing

the strengths and weaknesses of each.
3. Implement simple performance measurements for high-performance systems.
4. Design, code, test, and debug programs using techniques of numerical analysis,

computer simulation, and scientific visualization.

CC2001 Computer Science volume – 157 –
Final Report (December 15, 2001)

Appendix B
Course Descriptions

This appendix to the Computing Curricula 2001 report consists of a set of course
descriptions intended to serve as models for institutions offering undergraduate degrees in
computer science. Although some institutions will presumably follow these models with
little modification, the course designs presented here are intentionally designed to be
flexible, allowing individual institutions to customize them to fit their own needs.

In most cases, the courses described here are similar to those already offered at the
undergraduate level. The CC2001 Task Force sought to identify and document
successful practice rather than to create entirely new models. While we encourage the
development of innovative curricular strategies and experimental courses, we recognize
that course design requires considerable time and in-class assessment that cannot be done
effectively by committee. The model courses in this appendix are therefore best regarded
as a common starting point for experimentation. While each course is presented in
enough detail to be usable as it stands, institutions and individual faculty are encouraged
to adapt and extend these courses as part of the dynamic process of curriculum
develoment.

Fundamental concepts
The rationale behind the CC2001 curriculum is outlined in the full report of the task
force. The appendices, however, are likely to have wide circulation and will certainly be
read by many who do not have time to study the full report. For this reason, the task
force has chosen to include in each appendix a summary of the fundamental concepts that
are necessary to understand the recommendations. The most important concepts for
understanding the course descriptions are as follows:

• The CS body of knowledge. The courses described in this appendix are defined in
relation to a general taxonomy of that portion of computer science appropriate for an
undergraduate curriculum. That taxonomy represents the body of knowledge for
computer science. The body of knowledge is organized hierarchically into three
levels. The highest level of the hierarchy is the area, which represents a particular
disciplinary subfield. Each area is identified by a two-letter abbreviation, such as OS
for operating systems or PL for programming languages. The areas are broken down
into smaller divisions called units, which represent individual thematic modules within
an area. Each unit is identified by adding a numeric suffix to the area name; as an
example, OS3 is a unit on concurrency. Each unit is further subdivided into a set of
topics, which are the lowest level of the hierarchy. The complete set of areas, units,
and topics is specified in Appendix A.

• Core and elective units. Given the expanding scope of the computing discipline, it is
impossible to insist that every undergraduate learn all the topics that were at one time
considered fundamental to the field. The CC2001 Task Force has therefore sought to
define a minimal set of core units for which there is a broad consensus that the
material is essential to anyone obtaining an undergraduate degree in computer science.
Because the core is defined as minimal, the core alone cannot constitute a complete
undergraduate curriculum. Every undergraduate program must include additional
elective units from the body of knowledge, although the CC2001 report does not
define what those units must be. These elective units will typically vary by institution,
field of study, and the needs of the individual student.

CC2001 Computer Science volume – 158 –
Final Report (December 15, 2001)

• Introductory, intermediate, and advanced courses. The courses in this appendix are
divided into three categories according to the level at which they occur in the
curriculum. Courses designated as introductory are typically offered in the first year
of a college or university curriculum. Courses listed as intermediate are usually
offered in the second or third year and build a foundation for further study in the field.
Courses designated as advanced tend to be taken in later years and focus on those
topics that require significant preparation in the earlier coursework. While these
distinctions are easy to understand in their own right, it is important to recognize that
there is no necessary relationship between the notions of core and elective—which
apply to units in the body of knowlege—and the level of the course. Although
introductory and intermediate courses will certainly concentrate on core material, it is
perfectly reasonable to include some elective material even in the earliest courses.
Similarly, advanced courses will include some core material. These designations are
independent and should not be confused.

• Hours. To give readers a sense of the time required to cover a particular unit, the
CC2001 Task Force had to identify some metric that would provide at least a
comparative assessment of time. Choosing such a metric proved difficult, because
there is no standard measure that is recognized throughout the world. For consistency
with the earlier curriculum reports, the task force has chosen to express time in hours,
corresponding to the in-class time required to present the material in a traditional
lecture-oriented format. Note that this time does not include the instructor’s
preparation time or the time students spend outside of class. As a general guideline,
the time required outside of class is approximately three times the in-class time. Thus,
a unit that is listed as requiring 3 hours will typically entail a total of 12 hours (3 in
class and 9 outside). It is also important to keep in mind that the time associated with
each unit represents the minimum number of hours required for adequate coverage, and
that it is always appropriate to spend more time than the listed minimum.

Organization and format of the course descriptions
As described in the preceding section, the courses presented in this appendix are
organized into three levels: introductory, intermediate, and advanced. The point of this
division is to provide natural boundaries for defining implementation strategies. Chapter
7, for example, defines six distinct instantiations of the introductory curriculum; Chapter
8 outlines four thematic approaches to the intermediate courses, along with a set of hybrid
strategies that combine elements from these approaches. The implementation strategies
and their relationship in the curriculum are shown in Figure B-1.

In general, it should be possible to use any of the introductory approaches and follow it
up with any of the intermediate approaches, although doing so may require transition
material to ensure that all core units are covered. The strategies and tactics required to
ensure a successful transition are described in Chapters 6-8.

Figure B-1. Course levels and implementation strategies

Additional courses used to complete the undergraduate program

AlgorithmsObjects Functional Breadth HardwareIntroductory

Intermediate

Advanced

courses

courses

courses

first first first first first
Imperative

first

approach
Topic-based

approach
Compressed

approach
Systems-based

approach
Web-based

approaches
Hybrid

CC2001 Computer Science volume – 159 –
Final Report (December 15, 2001)

Figure B-2. Course numbering scheme

C S 2 2 6

Level

Subject area (applies to 200-300 level only)

Pedagogical approach (optional)

Identifying number within area

1xx = introductory, 2xx = intermediate, 3xx = advanced, 4xx = project

0 = Mathematics/Applications (DS, CN)
1 = Algorithms and complexity (AL)
2 = Architecture/OS (AR, OS)
3 = Net-centric computing (NC) 8 = Social and professional (SP)

5 = HCI/Graphics (HC, GV)
6 = Intelligent systems (IS)
7 = Information management (IM)

4 = Programming languages (PL) 9 = Software engineering (SE)C

= Imperative-firstI
= Objects-firstO
= Functional-firstF
= Breadth-firstB
= Algorithms-firstA
= Hardware-first

= Traditional discrete-topic approach

= Systems-based approachS

H

= Compressed approachC
T

= Web-based approachW

The names of the individual pedagogical approaches have been chosen so that each
begins with a unique letter. This fact makes it possible to assign course numbers in a way
that simultaneously encodes the level, area, and pedagogical approach, as illustrated in
Figure B-2. In the example shown, the subscript at the end of CS226C indicates that this
intermediate-level course is part of the compressed approach.

The format of each individual course description is shown in Figure B-3. The parts of the
template that vary from course to course appear in boxes.

Figure B-3. Components of a course description

Course number . Course title

Prerequisites:

Course description written in the style of a university course catalog, highlighting the
major topics and general expectations of the course.

Required courses, units, or background

Syllabus:

Bulleted list providing an outline of the topics covered.

Units covered:

List of units covered as defined in the CS body of knowledge.

Notes:

Optional narrative section offering additional explanatory notes about the course.
These may include goals, pedagogical suggestions, and assessment strategies.

CC2001 Computer Science volume – 160 –
Final Report (December 15, 2001)

CC2001 Computer Science volume – 161 –
Final Report (December 15, 2001)

B.1 Introductory tracks
In the course descriptions that follow, the introductory tracks are arranged in the order in
which they are presented in Chapter 8.

B.1.1 Imperative-first
The imperative-first approach offers two separate implementations: one that covers the
material in three courses (CS101I-102I-103I) and one that uses a more traditional two-
course sequence (CS111I-112I).

CS101I. Programming Fundamentals
Introduces the fundamental concepts of procedural programming. Topics include data
types, control structures, functions, arrays, files, and the mechanics of running, testing,
and debugging. The course also offers an introduction to the historical and social context
of computing and an overview of computer science as a discipline.

Prerequisites: No programming or computer science experience is required. Students
should have sufficient facility with high-school mathematics to solve simple linear
equations and to appreciate the use of mathematical notation and formalism.

Syllabus:
• Computing applications: Word processing; spreadsheets; editors; files and directories
• Fundamental programming constructs: Syntax and semantics of a higher-level

language; variables, types, expressions, and assignment; simple I/O; conditional and
iterative control structures; functions and parameter passing; structured decomposition

• Algorithms and problem-solving: Problem-solving strategies; the role of algorithms in
the problem-solving process; implementation strategies for algorithms; debugging
strategies; the concept and properties of algorithms

• Fundamental data structures: Primitive types; arrays; records; strings and string
processing

• Machine level representation of data: Bits, bytes, and words; numeric data
representation and number bases; representation of character data

• Overview of operating systems: The role and purpose of operating systems; simple file
management

• Introduction to net-centric computing: Background and history of networking and the
Internet; demonstration and use of networking software including e-mail, telnet, and
FTP

• Human-computer interaction: Introduction to design issues
• Software development methodology: Fundamental design concepts and principles;

structured design; testing and debugging strategies; test-case design; programming
environments; testing and debugging tools

• Social context of computing: History of computing and computers; evolution of ideas
and machines; social impact of computers and the Internet; professionalism, codes of
ethics, and responsible conduct; copyrights, intellectual property, and software piracy.

Units covered:
PF1 Fundamental programming constructs 10 hours (9 core + 1)
PF2 Algorithms and problem-solving 3 core hours (of 6)
PF3 Fundamental data structures 2 core hours (of 14)
AR2 Machine level representation of data 1 core hour (of 3)
AR3 Assembly level machine organization 2 core hours (of 9)

CC2001 Computer Science volume – 162 –
Final Report (December 15, 2001)

OS1 Overview of operating systems 1 core hour (of 2)
NC1 Introduction to net-centric computing 1 core hour (of 2)
PL3 Introduction to language translation 1 core hour (of 2)
PL4 Declarations and types 3 core hours
PL5 Abstraction mechanisms 3 core hours
HC1 Foundations of human-computer interaction 1 core hour (of 6)
GV1 Fundamental techniques in graphics 1 core hour (of 2)
SP1 History of computing 1 core hour
SP2 Social context of computing 1 core hour (of 3)
SP4 Professional and ethical responsibilities 1 core hour (of 3)
SP6 Intellectual property 1 core hour (of 3)
SE1 Software design 3 core hours (of 8)
SE3 Software tools and environments 2 core hours (of 3)
SE4 Software processes 1 core hour (of 2)

Elective topics 1 hour

Notes:
This course is part of an alternative implementation of the imperative-first introductory
track that covers the fundamental programming concepts in three semesters rather than
two. In terms of the curriculum, students should be able to move on to more advanced
courses after taking either the sequence CS101I-102I-103I or the two-semester sequence
sequence CS111I-112I, which covers the same material in a more concentrated fashion.
Although covering programming fundamentals in two semesters has long been standard
in computer science education, more and more programming topics can legitimately be
identified as fundamental, making it more difficult to provide a complete introduction to
this material in a single year. The CC2001 Task Force anticipates that three-semester
introductory sequences will become increasingly common over the next decade and
encourages departments and individual faculty to experiment with models along these
lines.

CC2001 Computer Science volume – 163 –
Final Report (December 15, 2001)

CS102I. The Object-Oriented Paradigm
Introduces the concepts of object-oriented programming to students with a background in
the procedural paradigm. The course begins with a review of control structures and data
types with emphasis on structured data types and array processing. It then moves on to
introduce the object-oriented programming paradigm, focusing on the definition and use
of classes along with the fundamentals of object-oriented design. Other topics include an
overview of programming language principles, simple analysis of algorithms, basic
searching and sorting techniques, and an introduction to software engineering issues.

Prerequisites: CS101I

Syllabus:
• Review of control structures, functions, and primitive data types
• Object-oriented programming: Object-oriented design; encapsulation and information-

hiding; separation of behavior and implementation; classes, subclasses, and
inheritance; polymorphism; class hierarchies

• Fundamental computing algorithms: simple searching and sorting algorithms (linear
and binary search, selection and insertion sort)

• Fundamentals of event-driven programming
• Introduction to computer graphics: Using a simple graphics API
• Overview of programming languages: History of programming languages; brief survey

of programming paradigms
• Virtual machines: The concept of a virtual machine; hierarchy of virtual machines;

intermediate languages
• Introduction to language translation: Comparison of interpreters and compilers;

language translation phases; machine-dependent and machine-independent aspects of
translation

• Introduction to database systems: History and motivation for database systems; use of
a database query language

• Software evolution: Software maintenance; characteristics of maintainable software;
reengineering; legacy systems; software reuse

Units covered:
PF1 Fundamental programming constructs 3 core hours (of 9)
PF2 Algorithms and problem-solving 6 core hours
PF3 Fundamental data structures 5 core hours (of 14)
PF5 Event-driven programming 1 core hour (of 4)
AL3 Fundamental computing algorithms 3 core hours (of 12)
AR2 Machine level representation of data 2 core hours (of 3)
PL1 Overview of programming languages 1 core hour (of 2)
PL2 Virtual machines 1 core hour
PL3 Introduction to language translation 1 core hour (of 2)
PL6 Object-oriented programming 6 core hours (of 10)
HC1 Foundations of human-computer interaction 1 core hour (of 6)
HC2 Building a simple graphical user interface 2 core hours
IM2 Database systems 1 core hour (of 3)
SE1 Software design 1 core hour (of 8)
SE2 Using APIs 2 core hours (of 5)
SE5 Software requirements and specifications 1 core hour (of 4)
SE6 Software validation 1 core hour (of 3)
SE7 Software evolution 1 core hour (of 3)

Elective topics 1 hour

CC2001 Computer Science volume – 164 –
Final Report (December 15, 2001)

Notes:
This course represents the second semester of an imperative-first introductory track that
covers the fundamental programming concepts in three semesters rather than two. The
rationale for including the three-course sequence CS101I-102I-103I as an alternative to
the more traditional two-semester sequence CS111I-112I is summarized in the notes for
CS101I and discussed in detail in Chapter 7 of the main report.

CC2001 Computer Science volume – 165 –
Final Report (December 15, 2001)

CS103I. Data Structures and Algorithms
Builds on the foundation provided by the CS101I-102I sequence to introduce the
fundamental concepts of data structures and the algorithms that proceed from them.
Topics include recursion, the underlying philosophy of object-oriented programming,
fundamental data structures (including stacks, queues, linked lists, hash tables, trees, and
graphs), the basics of algorithmic analysis, and an introduction to the principles of
language translation.

Prerequisites: CS102I; discrete mathematics at the level of CS105 is also desirable.

Syllabus:
• Review of elementary programming concepts
• Fundamental data structures: Stacks; queues; linked lists; hash tables; trees; graphs
• Object-oriented programming: Object-oriented design; encapsulation and information

hiding; classes; separation of behavior and implementation; class hierarchies;
inheritance; polymorphism

• Fundamental computing algorithms: O(N log N) sorting algorithms; hash tables,
including collision-avoidance strategies; binary search trees; representations of graphs;
depth- and breadth-first traversals

• Recursion: The concept of recursion; recursive mathematical functions; simple
recursive procedures; divide-and-conquer strategies; recursive backtracking;
implementation of recursion

• Basic algorithmic analysis: Asymptotic analysis of upper and average complexity
bounds; identifying differences among best, average, and worst case behaviors; big
“O,” little “o,” omega, and theta notation; standard complexity classes; empirical
measurements of performance; time and space tradeoffs in algorithms; using
recurrence relations to analyze recursive algorithms

• Algorithmic strategies: Brute-force algorithms; greedy algorithms; divide-and-
conquer; backtracking; branch-and-bound; heuristics; pattern matching and string/text
algorithms; numerical approximation algorithms

• Overview of programming languages: Programming paradigms
• Software engineering: Software validation; testing fundamentals, including test plan

creation and test case generation; object-oriented testing

Units covered:
DS5 Graphs and trees 2 core hours (of 4)
PF3 Fundamental data structures 12 core hours (of 14)
PF4 Recursion 5 core hours
AL1 Basic algorithmic analysis 2 core hours (of 4)
AL2 Algorithmic strategies 3 core hours (of 6)
AL3 Fundamental computing algorithms 5 core hours (of 12)
AL5 Basic computability 1 core hour (of 6)
PL1 Overview of programming languages 1 core hour (of 2)
PL6 Object-oriented programming 8 core hours (of 10)
SE6 Software validation 1 core hour (of 3)

Notes:
This course represents the third and final semester of an imperative-first introductory
track that covers the fundamental programming concepts in three semesters rather than
two. The rationale for including the three-course sequence CS101I-102I-103I as an
alternative to the more traditional two-semester sequence CS111I-112I is summarized in
the notes for CS101I and discussed in detail in Chapter 7 of the main report.

CC2001 Computer Science volume – 166 –
Final Report (December 15, 2001)

CS111I. Introduction to Programming
Introduces the fundamental techniques of programming as a foundation for more
advanced study of computer science. Considerable attention is devoted to developing
effective software engineering practice, emphasizing such principles as design,
decomposition, encapsulation, procedural abstraction, testing, and software reuse. Topics
include standard programming constructs, problem-solving strategies, the concept of an
algorithm, and fundamental data structures (strings, arrays, and records) along with an
introduction to machine representation, graphics, and networking.

Prerequisites: No programming or computer science experience is required. Students
should have sufficient facility with high-school mathematics to solve simple linear
equations and to appreciate the use of mathematical notation and formalism.

Syllabus:
• Background: History of computing, overview of programming languages and the

compilation process
• Fundamental programming constructs: Syntax and semantics of a higher-level

language; variables, types, expressions, and assignment; simple I/O; conditional and
iterative control structures; functions and parameter passing; structured decomposition

• Algorithms and problem-solving: Problem-solving strategies; the concept of an
algorithm; properties of algorithms; implementation strategies; sequential and binary
search algorithms; quadratic sorting algorithms (selection, insertion)

• Basic computability theory: Tractable and intractable problems; the existence of
noncomputable functions

• Graphics: Using a graphics API
• Principles of encapsulation: Encapsulation and information-hiding; separation of

behavior and implementation
• Fundamental data structures: Primitive types; arrays; records; strings and string

processing; pointers and references; static, stack, and heap allocation; runtime storage
management

• Machine level representation of data: Bits, bytes, and words; binary representation of
integers; representation of character data; representation of records and arrays

• Assembly level machine organization: Basic organization of the von Neumann
machine; instruction fetch, decode, and execution; assembly language programming
for a simulated machine

• Software development methodology: Fundamental design concepts and principles;
structured design; testing and debugging strategies; test-case design; programming
environments; testing and debugging tools

Units covered:
PF1 Fundamental programming constructs 9 core hours
PF2 Algorithms and problem-solving 3 core hours (of 6)
PF3 Fundamental data structures 6 core hours (of 14)
AL3 Fundamental computing algorithms 2 core hours (of 12)
AL5 Basic computability 1 core hour (of 6)
AR2 Machine level representation of data 1 core hour (of 3)
AR3 Assembly level machine organization 2 core hours (of 9)
PL1 Overview of programming languages 1 core hour (of 2)
PL4 Declarations and types 1 core hour (of 3)
PL5 Abstraction mechanisms 2 core hours (of 3)
PL6 Object-oriented programming 3 core hours (of 10)

CC2001 Computer Science volume – 167 –
Final Report (December 15, 2001)

GV1 Fundamental techniques in graphics 2 core hours
SP1 History of computing 1 core hour
SE1 Software design 2 core hours (of 8)
SE3 Software tools and environments 1 core hour (of 3)
SE5 Software requirements and specifications 1 core hour (of 4)
SE6 Software validation 1 core hour (of 3)

Elective topics 1 hour

Notes:
This course introduces the fundamental concepts of programming, emphasizing the
traditional procedural or imperative paradigm. Most modern programming languages are
suitable as a foundation for the programming assignments in this course, including those
that support the object-oriented paradigm; indeed, introductory courses that use object-
oriented languages often begin by emphasizing the procedural aspects of those languages.
What sets this course apart from the objects-first implementation in CS111O is the
ordering and emphasis of topics. In this course, the discussion of control statements
precedes the discussion of classes, subclasses, and inheritance; in the objects-first version,
this ordering is reversed.

Just as the procedural aspects of programming can be taught in an object-oriented
language, some of the fundamental principles of object-oriented programming can be
included even in the context of a traditional imperative language. The syllabus topic
entitled “Principles of encapsulation” makes sense in either domain, but would be
approached differently depending on the language. In either case, this presentation would
encompass some of the ideas in the PL6 unit on object-oriented programming.

CC2001 Computer Science volume – 168 –
Final Report (December 15, 2001)

CS112I. Data Abstraction
Continues the introduction of programming begun in CS111I, with a particular focus on
the ideas of data abstraction and object-oriented programming. Topics include recursion,
programming paradigms, principles of language design, virtual machines, object-oriented
programming, fundamental data structures, and an introduction to language translation.

Prerequisites: CS111I; discrete mathematics at the level of CS105 is also desirable.

Syllabus:
• Review of elementary programming
• Recursion: The concept of recursion; recursive specification of mathematical functions

(such as factorial and Fibonacci); simple recursive procedures (Towers of Hanoi,
permutations, fractal patterns); divide-and-conquer strategies; recursive backtracking;
implementation of recursion

• Introduction to computational complexity: Asymptotic analysis of upper and average
complexity bounds; big-O notation; standard complexity classes; empirical
measurements of performance

• Fundamental computing algorithms: O(N log N) sorting algorithms (Quicksort,
heapsort, mergesort); hashing, including collision-avoidance strategies; binary search
trees

• Programming languages: History of programming languages; brief survey of
programming paradigms (procedural, object-oriented, functional)

• Fundamental issues in language design: General principles of language design, design
goals, typing regimes, data structure models, control structure models, abstraction
mechanisms

• Virtual machines: The concept of a virtual machine, hierarchy of virtual machines,
intermediate languages

• Object-oriented programming: Object-oriented design; encapsulation and information-
hiding; separation of behavior and implementation; classes, subclasses, and
inheritance; polymorphism; class hierarchies; collection classes and iteration protocols;
fundamental design patterns

• Fundamental data structures: Linked structures; implementation strategies for stacks,
queues, hash tables, graphs, and trees; strategies for choosing data structures

• Introduction to language translation: Comparison of interpreters and compilers;
language translation phases (lexical analysis, parsing, code generation, optimization);
machine-dependent and machine-independent aspects of translation

Units covered:
DS5 Graphs and trees 2 core hours (of 4)
PF3 Fundamental data structures 6 core hours (of 14)
PF4 Recursion 5 core hours
AL1 Basic algorithmic analysis 2 core hours (of 4)
AL3 Fundamental computing algorithms 4 core hours (of 12)
PL1 Overview of programming languages 1 core hour (of 2)
PL2 Virtual machines 1 core hour
PL3 Introduction to language translation 2 core hours
PL4 Declarations and types 2 core hours (of 3)
PL5 Abstraction mechanisms 1 core hour (of 3)
PL6 Object-oriented programming 7 core hours (of 10)
SE1 Software design 2 core hours (of 8)
SE2 Using APIs 2 core hours (of 5)

CC2001 Computer Science volume – 169 –
Final Report (December 15, 2001)

SE3 Software tools and environments 2 core hours (of 3)
Elective topics 1 hour

Notes:
As noted in the description of the CS111I prerequisite, there is no guarantee that students
coming into this course will have used an object-oriented language. In any event, the
courses in the imperative-first track assume that the introductory course—even if it
happens to use an object-oriented language—concentrates on the imperative components
of that language rather than any object-oriented mechanisms. (For an object-oriented
implementation of the introductory curriculum, see the CS111O/CS112O sequence.) One
of the main goals of CS112I is to introduce the object-oriented paradigm and give
students experience using it. The other major topics are recursion, data structures, and
the core units in the Programming Languages area (PL), which fit appropriately into this
course.

CC2001 Computer Science volume – 170 –
Final Report (December 15, 2001)

B.1.2 Objects-first
Like the imperative-first approach, the objects-first strategy is also divided into a three-
course (CS101O-102O-103O) and a two-course implementation (CS111O-112O).

CS101O. Introduction to Object-Oriented Programming
Introduces the fundamental concepts of programming from an object-oriented
perspective. Topics include simple data types, control structures, an introduction to array
and string data structures and algorithms, as well as debugging techniques and the social
implications of computing. The course emphasizes good software engineering principles
and developing fundamental programming skills in the context of a language that
supports the object-oriented paradigm.

Prerequisites: No programming or computer science experience is required. Students
should have sufficient facility with high-school mathematics to solve simple linear
equations and to appreciate the use of mathematical notation and formalism.

Syllabus:
• Introduction to the history of computer science
• Ethics and responsibility of computer professionals
• Introduction to computer systems and environments
• Introduction to object-oriented paradigm: Abstraction; objects; classes; methods;

parameter passing; encapsulation; inheritance; polymorphism
• Fundamental programming constructs: Basic syntax and semantics of a higher-level

language; variables, types, expressions, and assignment; simple I/O; conditional and
iterative control structures; structured decomposition

• Fundamental data structures: Primitive types; arrays; records; strings and string
processing

• Introduction to programming languages
• Algorithms and problem-solving: Problem-solving strategies; the role of algorithms in

the problem-solving process; implementation strategies for algorithms; debugging
strategies; the concept and properties of algorithms

Units covered:
PF1 Fundamental programming constructs 9 core hours
PF2 Algorithms and problem-solving 3 core hours (of 6)
PF3 Fundamental data structures 3 core hours (of 14)
AL3 Fundamental computing algorithms 1 core hour (of 12)
AL5 Basic computability 1 core hour (of 6)
AR2 Machine level representation of data 2 core hours (of 3)
PL1 Overview of programming languages 2 core hours
PL4 Declarations and types 2 core hours (of 3)
PL6 Object-oriented programming 7 core hours (of 10)
PL8 Language translation systems 1 hour
SP1 History of computing 1 core hour
SP4 Professional and ethical responsibilities 1 core hour (of 3)
SP5 Risks and liabilities of computer-based systems 1 core hour (of 2)
SE3 Software tools and environments 1 core hour (of 3)
SE6 Software validation 1 core hour (of 3)

Elective topics 4 hours

CC2001 Computer Science volume – 171 –
Final Report (December 15, 2001)

Notes:
This course is part of an alternative implementation of the objects-first introductory track
that covers the fundamental programming concepts in three semesters rather than two. In
terms of the curriculum, students should be able to move on to more advanced courses
after taking either the sequence CS101O-102O-103O or the two-semester sequence
sequence CS111O-112O, which covers the same material in a more concentrated fashion.
Although covering programming fundamentals in two semesters has long been standard
in computer science education, more and more programming topics can legitimately be
identified as fundamental, making it more difficult to provide a complete introduction to
this material in a single year. The CC2001 Task Force anticipates that three-semester
introductory sequences will become increasingly common over the next decade and
encourages departments and individual faculty to experiment with models along these
lines.

What differentiates this course from the imperative-first implementation in CS101I-102I-
103I is the early emphasis on objects. In this course, the discussion of classes, subclasses,
and inheritance typically precedes even such basic concepts as conditional and iterative
control statements.

CC2001 Computer Science volume – 172 –
Final Report (December 15, 2001)

CS102O. Objects and Data Abstraction
Continues the introduction from CS101O to the methodology of programming from an
object-oriented perspective. Through the study of object design, this course also
introduces the basics of human-computer interfaces, graphics, and the social implications
of computing, with an emphasis on software engineering.

Prerequisites: CS101O

Syllabus:
• Review of object-oriented programming: Object-oriented methodology, object-

oriented design; software tools
• Principles of object-oriented programming: Inheritance; class hierarchies;

polymorphism; abstract and interface classes; container/collection classes and iterators
• Object-oriented design: Concept of design patterns and the use of APIs; modeling tools

such as class diagrams, CRC cards, and UML use cases
• Virtual machines: The concept of a virtual machine; hierarchy of virtual machines;

intermediate languages
• Fundamental computing algorithms: Searching; sorting; introduction to recursive

algorithms
• Fundamental data structures: Built-in, programmer-created, and dynamic data

structures
• Event-driven programming: Event-handling methods; event propagation; exception

handling
• Foundations of human-computer interaction: Human-centered development and

evaluation; principles of good design and good designers; engineering tradeoffs;
introduction to usability testing

• Fundamental techniques in graphics: Hierarchy of graphics software; using a graphics
API; simple color models; homogeneous coordinates; affine transformations; viewing
transformation; clipping

• Software engineering issues: Tools; processes; requirements; design and testing;
design for reuse; risks and liabilities of computer-based systems

Units covered:
PF3 Fundamental data structures 3 core hours (of 14)
PF4 Recursion 2 core hours (of 5)
PF5 Event-driven programming 2 core hours (of 4)
SE2 Using APIs 2 core hours (of 5)
AL1 Basic algorithmic analysis 1 core hour (of 4)
AL3 Fundamental computing algorithms 2 core hours (of 12)
AR2 Machine level representation of data 1 core hour (of 3)
PL2 Virtual machines 1 core hour
PL4 Declarations and types 1 core hour (of 3)
PL5 Abstraction mechanisms 3 core hours
PL6 Object-oriented programming 7 core hours (of 10)
HC1 Foundations of human-computer interaction 1 core hour (of 6)
GV1 Fundamental techniques in graphics 2 core hours
SE1 Software design 3 core hours (of 8)
SE3 Software tools and environments 1 core hour (of 3)
SE5 Software requirements and specifications 1 core hour (of 4)
SE6 Software validation 1 core hour (of 3)
SE7 Software evolution 1 core hour (of 3)

Elective topics 5 hours

CC2001 Computer Science volume – 173 –
Final Report (December 15, 2001)

Notes:
This course represents the second semester of an objects-first introductory track that
covers the fundamental programming concepts in three semesters rather than two. The
rationale for including the three-course sequence CS101O-102O-103O as an alternative to
the more traditional two-semester sequence CS111O-112O is summarized in the notes for
CS101O and discussed in detail in Chapter 7 of the main report.

CC2001 Computer Science volume – 174 –
Final Report (December 15, 2001)

CS103O. Algorithms and Data Structures
Builds on the introduction to object-oriented programming begun in CS101O and CS102O
with an emphasis on algorithms, data structures, and software engineering.

Prerequisites: CS102O

Syllabus:
• Review of object-oriented design
• Review of basic algorithm design
• Review of professional and ethical issues
• Algorithms and problem-solving: Classic techniques for algorithm design; problem-

solving in the object-oriented paradigm; application of algorithm design techniques to
a medium-sized project, with an emphasis on formal methods of testing

• Basic algorithmic analysis: Asymptotic analysis of upper and average complexity
bounds; identifying differences among best, average, and worst case behaviors; big
“O” notation; standard complexity classes; empirical measurements of performance;
time and space tradeoffs in algorithms

• Recursion: The concept of recursion; recursive mathematical functions; simple
recursive procedures; divide-and-conquer strategies; recursive backtracking;
implementation of recursion; recursion on trees and graphs

• Fundamental computing algorithms: Hash tables; binary search trees; representations
of graphs; depth- and breadth-first traversals; shortest-path algorithms; transitive
closure; minimum spanning tree; topological sort

• Fundamental data structures: Pointers and references; linked structures;
implementation strategies for stacks, queues, and hash tables; implementation
strategies for graphs and trees; strategies for choosing the right data structure

• Software engineering: Software project management; building a medium-sized system,
in teams, with algorithmic efficiency in mind

Units covered:
PF2 Algorithms and problem-solving 3 core hours (of 6)
PF3 Fundamental data structures 11 core hours (of 14)
PF4 Recursion 6 hours (5 core + 1)
AL1 Basic algorithmic analysis 3 core hours (of 4)
AL2 Algorithmic strategies 6 core hours
AL3 Fundamental computing algorithms 5 core hours (of 12)
SE1 Software design 1 core hour (of 8)
SE8 Software project management 1 core hour (of 3)

Elective topics 4 hours

Notes:
This course represents the third and final semester of an objects-first introductory track
that covers the fundamental programming concepts in three semesters rather than two.
The rationale for including the three-course sequence CS101O-102O-103O as an
alternative to the more traditional two-semester sequence CS111O-112O is summarized in
the notes for CS101O and discussed in detail in Chapter 7 of the main report.

CC2001 Computer Science volume – 175 –
Final Report (December 15, 2001)

CS111O. Object-Oriented Programming
Introduces the fundamental concepts programming from an object-oriented perspective.
Through the study of object design, this course also introduces the basics of human-
computer interfaces, graphics, and the social implications of computing, along with
significant coverage of software engineering.

Prerequisites: No programming or computer science experience is required. Students
should have sufficient facility with high-school mathematics to solve simple linear
equations and to appreciate the use of mathematical notation and formalism.

Syllabus:
• Background: History of computing, overview of programming languages and the

compilation process
• Introduction to object-oriented programming: Using an object-oriented language;

classes and objects; syntax of class definitions; methods; members
• Simple data: variables, types, and expressions; assignment
• Message passing: Simple methods; parameter passing
• Subclassing and inheritance
• Control structures: Iteration; conditionals
• Algorithms: Problem-solving strategies; the concept of an algorithm; properties of

algorithms; implementation strategies
• Simple data structures: Arrays; strings
• Collection classes and iteration protocols
• Using APIs: Class libraries; packages for graphics and GUI applications
• Object-oriented design: Fundamental design concepts and principles; introduction to

design patterns; object-oriented analysis and design; design for reuse
• Software engineering issues: Tools; processes; requirements; design and testing; risks

and liabilities of computer-based systems

Units covered:
PF1 Fundamental programming constructs 7 core hours (of 9)
PF2 Algorithms and problem-solving 2 core hours (of 6)
PF3 Fundamental data structures 3 core hours (of 14)
PF4 Recursion 2 core hours (of 5)
AL3 Fundamental computing algorithms 3 core hours (of 12)
AL5 Basic computability 1 core hour (of 6)
PL4 Declarations and types 2 core hours (of 3)
PL5 Abstraction mechanisms 1 core hour (of 3)
PL6 Object-oriented programming 8 core hours (of 10)
GV1 Fundamental techniques in graphics 2 core hours
SP1 History of computing 1 core hour
SP5 Risks and liabilities of computer-based systems 1 core hour (of 2)
SE1 Software design 2 core hours (of 8)
SE2 Using APIs 1 core hour (of 5)
SE3 Software tools and environments 2 core hours (of 3)

Elective topics 2 hours

Notes:
This course introduces the fundamental concepts of programming, starting from the very
beginning with the object-oriented paradigm. What differentiates this course from the

CC2001 Computer Science volume – 176 –
Final Report (December 15, 2001)

imperative-first implementation in CS111I is the early emphasis on objects. In this
course, the discussion of classes, subclasses, and inheritance typically precedes even such
basic concepts as conditional and iterative control statements.

To illustrate how this emphasis on objects affects the design of this course, it helps to
consider a common sample application—a simple numeric calculator—that might
reasonably fit into either an imperative-first or objects-first implementation of an
introductory course. Under the imperative paradigm, such a program would typically be
organized as a loop that repeatedly requested commands from the user and then used a
conditional dispatch operation—typically implemented as a switch statement in C-based
languages—to execute the appropriate code for each operation. An object-oriented
approach to the same problem would typically have no explicit loops or conditionals.
Instead, the buttons on the calculator would all be part of an object hierarchy. The
buttons for the digits, for example, would all be instances of a digit button class whose
common action would be to append the appropriate digit to the end of the displayed
value; the individual instances of the digit buttons would differ only in the value of the
local member variable representing the digit to which that button corresponds. Similarly,
the operator buttons would all be part of a separate class hierarchy containing an operate
method to perform an arithmetic operation. The plus button would implement one
definition for operate; the minus button would implement another. The use of the
object-oriented paradigm makes it possible for students to solve this sort of problem far
earlier in the course, since the number and complexity of the necessary control structures
are significantly reduced.

Most courses that adopt an objects-first approach will do so in an environment that
supports a rich collection of application programmer interfaces, or APIs. These APIs can
be an enormous help to students, because they enable the creation of much more exciting
programs at an early level, thereby heightening student motivation. At the same time, the
scale of most API packages can be intimidating to many students, since there are so many
classes and methods from which to choose. To mitigate the effects of this conceptual
overload, faculty should not hesitate to simplify the problem domain by creating
restricted class libraries for introductory use.

CC2001 Computer Science volume – 177 –
Final Report (December 15, 2001)

CS112O. Object-Oriented Design and Methodology
Continues the introduction to object-oriented programming begun in CS111O, with an
emphasis on algorithms, data structures, software engineering, and the social context of
computing.

Prerequisites: CS111O

Syllabus:
• Review of object oriented design, and programming, including review of tools
• Review of simple algorithm design, with concern for ethical and social responsibility

(e.g. the need for testing)
• Classic techniques for algorithm design and implementation and their place in an

object-oriented design
• Abstraction and encapsulation through classic data structures: Introduction (use, not

implementation of) classic data structures (list, stack, and queue) and their relation to
algorithm design

• Introduction to basic algorithmic analysis
• Application of algorithm design techniques to a medium-sized project, with an

emphasis on formal methods of testing
• Recursion: Recursion as a design technique; implementation of recursion and its

relation to iteration; introduction to trees and graphs
• Introduction to distributed algorithms
• Software engineering: Building a medium sized system, in teams, with algorithmic

efficiency in mind

Units covered:
PF1 Fundamental programming constructs 2 core hours (of 9)
PF2 Algorithms and problem-solving 2 core hours (of 6)
PF3 Fundamental data structures 8 core hours (of 14)
PF4 Recursion 3 core hours (of 5)
PF5 Event-driven programming 2 core hours (of 4)
AL1 Basic algorithmic analysis 2 core hours (of 4)
AL2 Algorithmic strategies 2 core hours (of 6)
AL3 Fundamental computing algorithms 3 core hours (of 12)
PL1 Overview of programming languages 2 core hours
PL2 Virtual machines 1 core hour
PL4 Declarations and types 1 core hour (of 3)
PL5 Abstraction mechanisms 2 core hours (of 3)
PL6 Object-oriented programming 4 core hours (of 10)
HC1 Foundations of human-computer interaction 1 core hour (of 6)
SE1 Software design 2 core hours (of 8)
SE2 Using APIs 1 core hour (of 5)
SE5 Software requirements and specifications 1 core hour (of 4)
SE6 Software validation 1 core hour (of 3)

Notes:
This course builds on the foundation established by CS111O to complete a full year of
introductory programming. Because the first course has included more material on the
mechanics of object-oriented programming than is typical in an imperative-first
introduction, CS112O can devote more time to issues of design and software engineering
along with the traditional coverage of data structures and algorithms.

CC2001 Computer Science volume – 178 –
Final Report (December 15, 2001)

B.1.3 Functional-first
The functional-first approach exists only in the two-semester form. If the approach
proves popular, it may be appropriate to consider a three-semester implementation.

CS111F. Introduction to Functional Programming
Introduces the basic concepts of programming in the context of a functional language that
emphasizes algorithmic strategies over syntactic detail.

Prerequisites: none

Syllabus:
• Overview of the history of computing
• Procedural abstraction: Simple functions; parameters and results; composition;

conditional expressions
• Recursion: The concept of recursion; recursive mathematical functions; simple

recursive procedures
• Data abstraction: List structure; hierarchical data; symbolic data; the importance of

data abstraction
• Algorithms and problem-solving: Problem-solving strategies; the role of algorithms in

the problem-solving process; implementation strategies for algorithms; debugging
strategies; the concept and properties of algorithms

• Algorithmic strategies: Brute-force algorithms; greedy algorithms; divide-and-
conquer; backtracking; numerical approximation algorithms

• Basic computability theory: Tractable and intractable problems; the existence of
noncomputable functions

• Basic computational complexity: Asymptotic analysis of upper and average
complexity bounds; big-O notation; standard complexity classes; empirical
measurements of performance

• Overview of programming languages: History of programming languages; brief survey
of programming paradigms; the role of language translation in the programming
process

• Evaluation strategies: Representing computation state; streams; lazy evaluation;
nondeterminism; the construction of an interpreter

• Machine level representation of data: Bits, bytes, and words; numeric data
representation and number bases; signed and twos-complement representations;
representation of nonnumeric data

Units covered:
DS5 Graphs and trees 3 core hours (of 4)
PF1 Fundamental programming constructs 3 core hours (of 9)
PF2 Algorithms and problem-solving 2 core hours (of 6)
PF3 Fundamental data structures 6 core hours (of 14)
PF4 Recursion 5 core hours
OS3 Concurrency 2 core hours (of 6)
AL1 Basic algorithmic analysis 2 core hours (of 4)
AL2 Algorithmic strategies 2 core hours (of 6)
AL3 Fundamental computing algorithms 4 core hours (of 12)
AL5 Basic computability 1 core hour (of 6)
PL1 Overview of programming languages 1 core hour (of 2)
PL4 Declarations and types 1 core hour (of 3)

CC2001 Computer Science volume – 179 –
Final Report (December 15, 2001)

PL5 Abstraction mechanisms 1 core hour (of 3)
PL7 Functional programming 4 hours (of 7)
SP1 History of computing 1 core hour
SE1 Software design 1 core hour (of 8)
SE3 Software tools and environments 1 core hour (of 3)

CC2001 Computer Science volume – 180 –
Final Report (December 15, 2001)

CS112F. Objects and Algorithms
Extends the foundation developed in CS111F to encompass object-oriented programming
and design.

Prerequisites: CS111F

Syllabus:
• Fundamental programming constructs: Basic syntax and semantics of a higher-level

language; variables, types, expressions, and assignment; simple I/O; conditional and
iterative control structures; functions and parameter passing; structured decomposition

• Object-oriented programming: Object-oriented design; encapsulation and information-
hiding; separation of behavior and implementation; classes, subclasses, and
inheritance; polymorphism; class hierarchies; collection classes and iteration protocols;
fundamental design patterns

• Fundamental data structures: Primitive types; arrays; records; strings and string
processing; pointers and references; linked structures; strategies for choosing the right
data structure

• Event-driven and concurrent programming: Event-handling methods; event
propagation; managing concurrency in event handling; exception handling

• Using APIs: API programming; class browsers and related tools; programming by
example; debugging in the API environment

• Algorithmic strategies: Brute-force algorithms; greedy algorithms; divide-and-
conquer; backtracking; heuristics

• Fundamental computing algorithms: Simple numerical algorithms; sequential and
binary search algorithms; sorting algorithms

• Virtual machines: The concept of a virtual machine; hierarchy of virtual machines;
intermediate languages; security issues arising from running code on an alien machine

• Fundamental techniques in graphics: Hierarchy of graphics software; using a graphics
API

• Software development methodology: Fundamental design concepts and principles;
structured design; testing and debugging strategies; test-case design; programming
environments; testing and debugging tools

Units covered:
PF1 Fundamental programming constructs 6 core hours (of 9)
PF2 Algorithms and problem-solving 1 core hour (of 6)
PF3 Fundamental data structures 5 core hours (of 14)
PF5 Event-driven programming 2 core hours (of 4)
AL2 Algorithmic strategies 2 core hours (of 6)
AL3 Fundamental computing algorithms 2 core hours (of 12)
PL1 Overview of programming languages 1 core hour (of 2)
PL2 Virtual machines 1 core hour
PL4 Declarations and types 2 core hours (of 3)
PL5 Abstraction mechanisms 2 core hours (of 3)
PL6 Object-oriented programming 8 core hours (of 10)
SE1 Software design 3 core hours (of 8)
SE2 Using APIs 2 core hours (of 5)
SE3 Software tools and environments 1 core hour (of 3)
SE5 Software requirements and specifications 1 core hour (of 4)
SE6 Software validation 1 core hour (of 3)

CC2001 Computer Science volume – 181 –
Final Report (December 15, 2001)

B.1.4 Breadth-first
As outlined in Chapter 8, we propose two implementations of a breadth-first approach.
The first is simply to include an overview course (CS100B) before a more conventional
programming sequence. The second is to expand the introductory curriculum into a
three-semester sequence (CS101B-102B-103B) so that there is time for the additional
topics.

CS100B. Preview of Computer Science
Offers a broad overview of computer science designed to provide students with an
appreciation for and an understanding of the many different aspects of computer science.
Topics include discrete mathematics, an introduction to programming languages,
algorithmic problem solving, analysis of algorithmic complexity, basic concepts in
hardware, operating systems, networks, graphics, and an overview of the social context of
computing. No background in computer science is assumed or expected. The course is
intended for both students who expect to major or minor in computer science as well as
for those not planning on taking additional course work.

Prerequisites: none

Syllabus:
• Mathematical preliminaries: Sets, functions, logic, proofs
• Algorithms: Definition, design, and implementation; introduction to classical

algorithms (sorting, searching, and pattern matching)
• Algorithmic analysis: Efficiency; asymptotic analysis; computational complexity; big-

O notation; polynomial vs. exponential growth; computability
• Hardware realizations of algorithms: Data representation; the von Neumann model of

computation; the fetch/decode/execute cycle; basic machine organization
• Programming fundamentals: Overview of programming fundamentals and object-

oriented design principles; brief introduction to a programming language that supports
the object-oriented paradigm

• Operating systems and virtual machines: Historical evolution of operating systems;
responsibilties of an operating system; basic components of an operating system

• Networking and computer graphics: Brief introduction to some of the basic concepts in
networking and computer graphics

• Social and professional issues: Social context of computing; responsibilities of
computing professionals

Units covered:
DS1 Functions, relations, and sets 2 core hours (of 6)
DS2 Basic logic 2 core hours (of 10)
PF1 Fundamental programming constructs 5 core hours (of 9)
PF2 Algorithms and problem-solving 3 core hours (of 6)
AL1 Basic algorithmic analysis 4 core hours
AL3 Fundamental computing algorithms 4 core hours (of 12)
AR6 Functional organization 4 core hours (of 7)
OS1 Overview of operating systems 2 core hours
OS2 Operating system principles 1 core hour (of 2)
NC1 Introduction to net-centric computing 2 core hours
NC2 Communication and networking 1 core hour (of 7)
PL6 Object-oriented programming 4 core hours (of 10)
GV1 Fundamental techniques in graphics 2 core hours
GV2 Graphic systems 1 core hour
SP2 Social context of computing 3 core hours

CC2001 Computer Science volume – 182 –
Final Report (December 15, 2001)

Notes:
It is, of course, impossible to cover all of computer science within a single course. The
exact list of topics and their ordering will therefore vary based on the interests and
background of the instructor. At a minimum, an initial breadth-first course should
include a solid introduction to algorithms, some basic concepts in hardware and computer
organization, an exposure to abstraction and the virtual environments created by software,
a brief introduction to programming and software development, and a treatment of the
social, ethical, and professional issues that arise in the field. Beyond that, each instructor
should feel free to choose the specific topics covered, particularly in terms of the
treatment of modern computing applications. The sample syllabus includes about six
hours of material on networking and computer graphics, both important and rapidly
growing areas. It would, however, be appropriate to expand these topics or supplement
them with material on other important issues such as databases, artificial intelligence, and
distributed systems.

There are two important considerations in the design of a breadth-first introduction to
computer science. The first is to treat discrete mathematics not as a separate and
unrelated subject, but as a fully integrated component of the course. By doing so,
students will better understand and appreciate the importance of discrete mathematics to
our discipline. For example, Boolean logic could be introduced during a discussion of
programming language operators, counting methods could be presented during a
discussion of the efficiency of iterative algorithms, while recurrence relations are a
natural way to study the performance of recursive algorithms. The goal is for students to
be introduced to mathematical concepts within the context of their use in solving
important computing problems.

The second point is that the many disparate topics typically found in a breadth-first
course must be tied together into an integrated whole. Students must not see the course
as a collection of interesting but unrelated topics in a “if this is Tuesday it must be
computer organization” style. They should instead develop an appreciation for the
important relationships among the major subfields of computer science. This goal can be
achieved by demonstrating how each of the course topics utilizes earlier ideas and builds
on them to produce newer and more powerful abstractions. This type of “spiral”
approach, which reinforces, emphasizes, and builds on previous concepts, is an important
aspect to the success of such a course.

CC2001 Computer Science volume – 183 –
Final Report (December 15, 2001)

CS101B. Introduction to Computer Science
Presents a broad overview of computer science that integrates programming with discrete
mathematics, hardware fundamentals, algorithms, and computability.

Prerequisites: No programming or computer science experience is required. Students
should have sufficient facility with high-school mathematics to solve simple linear
equations and to appreciate the use of mathematical notation and formalism.

Syllabus:
• Discrete mathematics: Functions, relations, and sets; basic logic; proof techniques;

basics of counting; discrete probability
• Fundamental programming constructs: Basic syntax and semantics of a higher-level

language; variables, types, expressions, and assignment; simple I/O; conditional and
iterative control structures; functions and parameter passing; structured decomposition

• Algorithms and problem-solving: Problem-solving strategies; the role of algorithms in
the problem-solving process; the concept and properties of algorithms

• Fundamental data structures: Primitive types; arrays; strings and string processing
• Recursion: The concept of recursion; recursive mathematical functions; divide-and-

conquer strategies
• Basic algorithmic analysis: Big “O” notation; standard complexity classes
• Fundamental computing algorithms: Simple numerical algorithms; sequential and

binary search algorithms; quadratic and O(n log n) sorting algorithms
• Basic computability: Finite-state machines; Turing machines; tractable and intractable

problems; uncomputable functions; the halting problem; implications of
uncomputability

• Overview of programming languages: History of programming languages
• Digital logic and digital systems: Overview and history of computer architecture;

fundamental building blocks; logic expressions
• History of computing
• Introduction to the social implications of computing

Units covered:
DS1 Functions, relations, and sets 4 core hours (of 6)
DS2 Basic logic 5 core hours (of 10)
DS3 Proof techniques 4 core hours (of 12)
DS4 Basics of counting 3 core hours (of 5)
DS6 Discrete probability 4 core hours (of 6)
PF1 Fundamental programming constructs 3 core hours (of 9)
PF2 Algorithms and problem-solving 2 core hours (of 6)
PF3 Fundamental data structures 2 core hours (of 14)
PF4 Recursion 2 core hours (of 5)
AL1 Basic algorithmic analysis 1 core hour (of 4)
AL3 Fundamental computing algorithms 2 core hours (of 12)
AL5 Basic computability 1 core hour (of 6)
AR1 Digital logic and digital systems 2 core hours (of 6)
PL1 Overview of programming languages 1 core hour (of 2)
PL3 Introduction to language translation 1 core hour (of 2)
PL4 Declarations and types 1 core hour (of 3)
SP1 History of computing 1 core hour
SP2 Social context of computing 1 core hour (of 3)

CC2001 Computer Science volume – 184 –
Final Report (December 15, 2001)

Notes:
This course is the first of a three-semester sequence (CS101B-102B-103B) that seeks to
offer a broad, integrated introduction to computer science, along the lines advocated by
the 1989 “Computing as a Discipline” report [Denning89] and Computing Curricula 1991
[Tucker91]. Each of the three courses in the sequence includes theory along with
programming, and a range of additional topics are introduced in each course in the
sequence.

As we note in Chapter 7, the breadth-first model has not enjoyed the success that its
proponents had envisioned. We believe, however, that part of the problem may have
come from trying to fit all these topics into too small a space. Given the expansion of
prorgamming-related material that must be covered in the introductory sequence, there
simply isn’t time to cover the broader concepts of the discipline at any depth in the
confines of the traditional two-semester sequence. As a result, most breadth-first courses
that exist today seem to be lead-ins to a more traditional programming sequence. This
model, which has several successful implementations, is outlined in the syllabus for
CS100B.

In the last few years, however, the two-semester introductory sequence has become
cramped even for the programming material. As a result, several institutions are moving
toward a three-semester introductory sequence. We endorse these efforts in section 7.7.3
and offer a sample implementation in CS100B. The interesting question that this move
toward three-semester sequences brings up is whether the additional time makes a
breadth-first approach more viable.

The material presented in the CS101B-102B-103B sequence is quite similar to that offered
in any of the traditional two-semester introductions and the CS115 discrete structures
class. The difference is the ordering of the material. In the breadth-first sequence,
mathematics is distributed throughout all three semesters and is more directly coupled to
the topics that use it. In this way, students will have a greater opportunity to appreciate
the connections between theory and practice.

A major danger of all breadth-first approaches lies in the fact that students tend to be far
more attracted by the programming material, which they see as exciting and empowering,
than they are to the more theoretical material. In this treatment, we have taken care to
include more programming in the first course than has sometimes been true of breadth-
first introductions. In the count of units, a third of the material in CS101B is directly
related to programming and much of the rest can be presented so as to emphasize its
practical importance.

We recognize that this approach has not been tested and that it may therefore suffer from
the same modes of failure that plagued the earlier breadth-first attempts. We believe,
however, that the expansion to three semesters may help to address these problems. After
all, three-semester sequences—a breadth-first preliminary course followed by a two-
semester programming sequence—do exist and seem to be reasonably successful. The
advantage of the more integrated design is that students will be exposed to more
programming in the first course and more theory in the courses that follow.

CC2001 Computer Science volume – 185 –
Final Report (December 15, 2001)

CS102B. Algorithms and Programming Techniques
Provides an introduction to programming that builds on a broad introduction to the
computer science discipline.

Prerequisites: CS101B

Syllabus:
• Discrete mathematics: Basic logic; proof techniques
• Algorithms and problem-solving: Implementation strategies for algorithms; debugging

strategies
• Fundamental programming constructs: Declaration models; garbage collection;

abstraction mechanisms; modules
• Fundamental data structures: Arrays; records; strings and string processing; data

representation in memory; static, stack, and heap allocation; runtime storage
management; pointers and references

• Object-oriented programming: Encapsulation and information-hiding; separation of
behavior and implementation; classes and subclasses; inheritance; polymorphism; class
hierarchies

• Fundamental computing algorithms: Simple numerical algorithms; hash tables
• Overview of programming languages: Brief survey of programming paradigms
• Virtual machines: The concept of a virtual machine; hierarchy of virtual machines;

intermediate languages
• Machine level representation of data: Bits, bytes, and words; numeric data

representation and number bases; fixed- and floating-point systems; signed and twos-
complement representations; representation of nonnumeric data; representation of
records and arrays

• Assembly level machine organization: Basic organization of the von Neumann
machine; control unit; instruction fetch, decode, and execution

• Introduction to net-centric computing: Background and history of networking and the
Internet; network architectures

• Building a simple graphical user interface: Principles of graphical user interfaces; GUI
toolkits

• Software engineering: Software design; software tools and environments; requirements
and specifications; software validation; testing and debugging strategies

Units covered:
DS2 Basic logic 5 core hours (of 10)
DS3 Proof techniques 2 core hours (of 12)
PF1 Fundamental programming constructs 5 core hours (of 9)
PF2 Algorithms and problem-solving 1 core hour (of 6)
PF3 Fundamental data structures 3 core hours (of 14)
PF4 Recursion 1 core hour (of 5)
PF5 Event-driven programming 1 core hour (of 4)
AL3 Fundamental computing algorithms 1 core hour (of 12)
AR1 Digital logic and digital systems 1 core hour (of 6)
AR2 Machine level representation of data 1 core hour (of 3)
AR3 Assembly level machine organization 1 core hour (of 9)
NC1 Introduction to net-centric computing 1 core hour (of 2)
PL1 Overview of programming languages 1 core hour (of 2)
PL2 Virtual machines 1 core hour

CC2001 Computer Science volume – 186 –
Final Report (December 15, 2001)

PL4 Declarations and types 2 core hours (of 3)
PL5 Abstraction mechanisms 2 core hours (of 3)
PL6 Object-oriented programming 3 core hours (of 10)
HC1 Foundations of human-computer interaction 1 core hour (of 6)
HC2 Building a simple graphical user interface 2 core hours
SE1 Software design 2 core hours (of 8)
SE3 Software tools and environments 1 core hour (of 3)
SE5 Software requirements and specifications 1 core hour (of 4)
SE6 Software validation 1 core hour (of 3)

Notes:
This course is the second of a three-semester sequence (CS101B-102B-103B) that seeks to
offer a broad, integrated introduction to computer science. The rationale for the design of
the sequence and suggestions for its implementation are given in the notes to CS101B.

CC2001 Computer Science volume – 187 –
Final Report (December 15, 2001)

CS103B. Principles of Object-Oriented Design
Offers students the opportunity to extend their understanding of object-oriented
programming by focusing on data structures, the interactions of algorithms and
programming, and the principles of object-oriented design.

Prerequisites: CS103B

Syllabus:
• Discrete mathematics: functions, relations, and sets; proof techniques; solving

recurrence relations; mathematical properties of graphs and trees; discrete probability
• Fundamental programming constructs: Iterators and iteration models; recursion in data

structures
• Fundamental data structures: Implementation strategies for stacks, queues, hash tables,

graphs, and trees; strategies for choosing the right data structure
• Using APIs: API programming; class browsers and related tools; programming by

example; debugging in the API environment; introduction to component-based
computing

• Algorithmic analysis: Asymptotic analysis of upper and average complexity bounds;
identifying differences among best, average, and worst case behaviors; little “o,”
omega, and theta notation; empirical measurements of performance; time and space
tradeoffs in algorithms; using recurrence relations to analyze recursive algorithms

• Fundamental computing algorithms: Binary search trees; representations of graphs;
depth- and breadth-first traversals; shortest-path algorithms; transitive closure;
minimum spanning tree; topological sort

• Introduction to language translation: Comparison of interpreters and compilers;
language translation phases; machine-dependent and machine-independent aspects of
translation; parsing strategies

• Object-oriented programming: Object-oriented design; encapsulation and information-
hiding; separation of behavior and implementation; collection classes and iteration
protocols; internal representations of objects and method tables

• Overview of operating systems: Role and purpose of the operating system; history of
operating system development; functionality of a typical operating system

• Fundamental issues in intelligent systems: History of artificial intelligence;
philosophical questions; fundamental definitions; philosophical questions; modeling
the world; the role of heuristics

• Software engineering: Software design; object-oriented analysis and design; design for
reuse; design patterns; programming environments; testing tools

Units covered:
DS1 Functions, relations, and sets 2 core hours (of 6)
DS3 Proof techniques 3 core hours (of 12)
DS4 Basics of counting 2 core hours (of 5)
DS5 Graphs and trees 2 core hours (of 4)
DS6 Discrete probability 2 core hours (of 6)
PF1 Fundamental programming constructs 1 core hour (of 9)
PF3 Fundamental data structures 6 core hours (of 14)
PF4 Recursion 2 core hours (of 5)
AL1 Basic algorithmic analysis 2 core hours (of 4)
AL3 Fundamental computing algorithms 3 core hours (of 12)
OS1 Overview of operating systems 1 core hour (of 2)
PL3 Introduction to language translation 1 core hour (of 2)

CC2001 Computer Science volume – 188 –
Final Report (December 15, 2001)

PL5 Abstraction mechanisms 1 core hour (of 3)
PL6 Object-oriented programming 5 core hours (of 10)
IS1 Fundamental issues in intelligent systems 1 core hour
IM1 Information models and systems 1 core hour (of 3)
SE1 Software design 2 core hours (of 8)
SE2 Using APIs 2 core hours (of 5)
SE3 Software tools and environments 1 core hour (of 3)

Notes:
This course is the third of a three-semester sequence (CS101B-102B-103B) that seeks to
offer a broad, integrated introduction to computer science. The rationale for the design of
the sequence and suggestions for its implementation are given in the notes to CS101B.

CC2001 Computer Science volume – 189 –
Final Report (December 15, 2001)

B.1.5 Algorithms-first
The algorithms-first approach exists only in the two-semester form. If the approach
proves popular, it may be appropriate to consider a three-semester implementation.

CS111A. Introduction to Algorithms and Applications
Introduces a two-part survey of computing applications and algorithmic principles. This
course introduces the range of algorithmic concepts and constructs, independent of any
particular programming language, together with a wide range of application software.
The follow-on course, CS112A, begins the transfer of the conceptual foundation to an
executable programming context.

Prerequisites: none

Syllabus:
• Background: History of technology and human thought, including technology as a

catalyst of paradigmatic change; history of computing
• Algorithms and problem-solving: Problem-solving strategies; the role of algorithms in

the problem-solving process; the concept and properties of algorithms; pseudocode
descriptions of algorithms

• Introduction to recursion: The concept of recursion; recursive mathematical functions;
simple recursive procedures; divide-and-conquer strategies

• Fundamental programming constructs: Variables, types, expressions, and assignment;
conditional and iterative control structures; abstraction using functions and procedures

• Fundamental data structures: Primitive types; arrays; records; the idea of type
abstraction

• Introduction to object-oriented programming: Object-oriented design; encapsulation
and information-hiding; separation of behavior and implementation; classes and
subclasses; inheritance; polymorphism

• Fundamental computing algorithms: Simple numerical algorithms; sequential and
binary search algorithms; sorting algorithms

• Basic algorithmic analysis: Introduction to computational complexity; identifying
differences among best, average, and worst case behaviors; big O notation; standard
complexity classes; empirical measurements of performance; time and space tradeoffs
in algorithms

• Basic computability: Tractable and intractable problems; uncomputable functions; the
halting problem; implications of uncomputability; the limits of computing

Units covered:
PF1 Fundamental programming constructs 9 core hours
PF2 Algorithms and problem-solving 3 core hours (of 6)
PF3 Fundamental data structures 6 core hours (of 14)
PF4 Recursion 3 core hours (of 5)
AL1 Basic algorithmic analysis 2 core hours (of 4)
AL2 Algorithmic strategies 2 core hours (of 6)
AL3 Fundamental computing algorithms 2 core hours (of 12)
AL5 Basic computability 1 core hour (of 6)
AL6 The complexity classes P and NP 1 hour
PL1 Overview of programming languages 1 core hour (of 2)
PL5 Abstraction mechanisms 2 core hours (of 3)
PL6 Object-oriented programming 4 core hours (of 10)

CC2001 Computer Science volume – 190 –
Final Report (December 15, 2001)

SP1 History of computing 1 core hour
SE1 Software design 2 core hours (of 8)
SE5 Software requirements and specifications 1 core hour (of 4)

Notes:
This course has a three-part agenda:

1. It introduces key algorithmic concepts and constructs apart from any particular
programming language and without executable performance requirements. Students
learn to construct and analyze algorithms in the context of a pseudocode that is
executable only “by hand and mind.” This permits students to distinguish between
essential concepts/constructs and the features of any particular programming
language. The absence of execution requirements permits comparatively rapid
progress through the range of concepts and constructs essential to functional,
imperative, and object-oriented paradigms.

2. Concurrent with the first agenda item, it introduces students to essential computing
applications in order to (a) provide students with hands-on computing experience to
complement the “by hand and mind” approach of the first item, (b) explicate the
power of, and need for, abstraction in contexts other than traditional programming
contexts, and (c) provide students with a foundation in powerful abstraction-based
approaches to using such applications.

3. Subsequent to the first two agenda items, once students have experience in reasoned
algorithmic development, tracing, and analysis, the course’s lecture and project
agendas merge, providing an introduction to applying these concepts and constructs
in the context of a modern, production-quality programming environment.

The lecture-and-homework agenda emphasizes abstraction, algorithm construction and
algorithm analysis in the context of a non-executable pseudocode. The lab-and-project
agenda emphasizes the development of both application-use and programming skills,
with an focus on abstraction as a key component in the successful use of applications and
programming languages. The goal is to provide students with a broad foundation that
explicates essential algorithmic constructs and their effective use in a language-
independent way, thus preparing students for a fast-paced “Introduction to Programming”
in any of a variety of programming languages and paradigms.

CC2001 Computer Science volume – 191 –
Final Report (December 15, 2001)

CS112A. Programming Methodology
Builds on the foundation provided by CS111A to provide students with immersion in
programming experience and associated techniques, with a focus on the object-oriented
paradigm. Emphasis on effective software engineering practices, including incremental
development, systematic testing, and hypothesis-driven debugging of software artifacts.

Prerequisites: CS111A

Syllabus:
• Review of elementary programming and data structures
• Overview of programming languages: History of programming languages; brief survey

of programming paradigms; virtual machines
• Recursion: Divide-and-conquer strategies; recursive backtracking; game trees;

implementation of recursion
• Fundamental data structures: Strings and string processing; data representation in

memory; static, stack, and heap allocation; runtime storage management; pointers and
references; linked structures; implementation strategies for stacks, queues, and hash
tables; implementation strategies for graphs and trees; strategies for choosing the right
data structure

• Object-oriented programming: Review of basic concepts; object-oriented design; class
hierarchies; collection classes and iteration protocols; internal representations of
objects and method tables

• Event-driven programming: Event-handling methods; event propagation; exception
handling

• Introduction to language translation: Comparison of interpreters and compilers;
language translation phases; machine-dependent and machine-independent aspects of
translation

• Algorithmic strategies: Brute-force algorithms; greedy algorithms; divide-and-
conquer; backtracking; branch-and-bound; heuristics; pattern matching and string/text
algorithms; numerical approximation algorithms

• Fundamental computing algorithms: Hash tables; binary search trees; representations
of graphs; depth- and breadth-first traversals; shortest-path algorithms; transitive
closure; spanning trees; topological sort; heaps

• Fundamental techniques in graphics: Using a graphics API; graphical user interfaces
• Introduction to cryptography: Historical overview of cryptography; private-key

cryptography and the key-exchange problem; public-key cryptography; digital
signatures

• Software development methodology: Fundamental design concepts and principles;
structured design; testing and debugging strategies; test-case design; programming
environments; testing and debugging tools

Units covered:
PF3 Fundamental data structures 5 core hours (of 14)
PF4 Recursion 2 core hours (of 5)
PF5 Event-driven programming 3 core hours (of 4)
AL2 Algorithmic strategies 2 core hours (of 6)
AL3 Fundamental computing algorithms 4 core hours (of 12)
AL9 Cryptographic algorithms 2 hours
PL1 Overview of programming languages 1 core hour (of 2)
PL2 Virtual machines 1 core hour

CC2001 Computer Science volume – 192 –
Final Report (December 15, 2001)

PL3 Introduction to language translation 2 core hours
PL4 Declarations and types 3 core hours
PL5 Abstraction mechanisms 1 core hour (of 3)
PL6 Object-oriented programming 4 core hours (of 10)
GV1 Fundamental techniques in graphics 2 core hours
SE1 Software design 2 core hours (of 8)
SE2 Using APIs 2 core hours (of 5)
SE3 Software tools and environments 2 core hours (of 3)
SE6 Software validation 1 core hour (of 3)
SE7 Software evolution 1 core hour (of 3)

Notes:
As specified in the description of CS111A, students in that course are exposed to the
complete range of algorithmic concepts and constructs. This liberates the teaching-and-
learning agenda of the current course to focus on effective programming skills, including
systematic approaches to design, implementation, testing and debugging. It also permits
students to proceed more rapidly through this agenda than might otherwise be possible, as
they enter the course with a broad and appropriate conceptual foundation.

Transfer students who have had only a single CS course other than CS111A are likely to
have difficulty in this course, as they will not likely have an adequate foundation. Except
in exceptional circumstances, they should be counseled to obtain a remedial foundation in
CS111A material prior to taking this course. Transfer students who have succeeded in
alternate versions of both CS111 and CS112 are likely to succeed in this course and to
appreciate its orientation to effective programming skills.

CC2001 Computer Science volume – 193 –
Final Report (December 15, 2001)

B.1.6 Hardware-first
The hardware-first approach exists only in the two-semester form. If the approach proves
popular, it may be appropriate to consider a three-semester implementation.

CS111H. Introduction to the Computer
Offers a bottom-up introduction to the computer, beginning with bits and moving up the
conceptual hierarchy to higher-level languages.

Prerequisites: none

Syllabus:
• Introduction: Brief history of computing; the components of a computing system
• Machine level representation of data: Bits, bytes, and words; numeric data

representation and number bases; signed and twos-complement representations;
fundamental operations on bits; representation of nonnumeric data

• Digital logic: Switching circuits; gates; memory
• Assembly level machine organization: Basic organization of the von Neumann

machine; control unit; instruction fetch, decode, and execution; instruction sets and
types; assembly/machine language programming; instruction formats

• Algorithms and problem-solving: Problem-solving strategies; the role of algorithms in
the problem-solving process; the concept and properties of algorithms

• Input and output: simple I/O; files
• Overview of programming languages: History of programming languages; brief survey

of programming paradigms; the role of language translation in the programming
process

• Fundamental programming constructs: Basic syntax and semantics of a higher-level
language; variables, types, expressions, and assignment; simple I/O; conditional and
iterative control structures; functions and parameter passing; structured decomposition

• Fundamental data structures: Primitive types; arrays; records; strings and string
processing; data representation in memory; pointers and references

• Recursion: The concept of recursion; recursive mathematical functions; simple
recursive procedures; implementation of recursion

• Software development methodology: Fundamental design concepts and principles;
structured design; testing and debugging strategies; test-case design; programming
environments; testing and debugging tools

Units covered:

CC2001 Computer Science volume – 194 –
Final Report (December 15, 2001)

PF1 Fundamental programming constructs 5 core hours (of 9)
PF2 Algorithms and problem-solving 2 core hours (of 6)
PF3 Fundamental data structures 5 core hours (of 14)
PF4 Recursion 5 core hours
AL2 Algorithmic strategies 2 core hours (of 6)
AL3 Fundamental computing algorithms 2 core hours (of 12)
AL5 Basic computability 1 core hour (of 6)
PL1 Overview of programming languages 1 core hour (of 2)
PL4 Declarations and types 1 core hour (of 3)
PL5 Abstraction mechanisms 2 core hours (of 3)
AR1 Digital logic and digital systems 3 core hours (of 6)
AR2 Machine level representation of data 2 core hours (of 3)
AR3 Assembly level machine organization 2 core hours (of 9)
AR4 Memory system organization and architecture 2 core hours (of 5)
SP1 History of computing 1 core hour
SE1 Software design 2 core hours (of 8)
SE3 Software tools and environments 1 core hour (of 3)
SE6 Software validation 1 core hour (of 3)

CC2001 Computer Science volume – 195 –
Final Report (December 15, 2001)

CS112H. Object-Oriented Programming Techniques
Extends the foundation developed in CS111H to encompass object-oriented programming
and algorithmic analysis.

Prerequisites: CS111H

Syllabus:
• Review of programming concepts
• Algorithms and problem-solving: Implementation strategies for algorithms; debugging

strategies
• Object-oriented programming: Object-oriented design; encapsulation and information-

hiding; separation of behavior and implementation; classes, subclasses, and
inheritance; polymorphism; class hierarchies; collection classes and iteration protocols;
fundamental design patterns

• Fundamental data structures: Static, stack, and heap allocation; runtime storage
management; linked structures; implementation strategies for stacks, queues, and hash
tables; implementation strategies for graphs and trees; strategies for choosing the right
data structure

• Event-driven and concurrent programming: Event-handling methods; event
propagation; managing concurrency in event handling; exception handling

• Using APIs: API programming; class browsers and related tools; programming by
example; debugging in the API environment

• Basic algorithmic analysis: Asymptotic analysis of upper and average complexity
bounds; identifying differences among best, average, and worst case behaviors; big
“O,” little “o,” omega, and theta notation; standard complexity classes; empirical
measurements of performance; time and space tradeoffs in algorithms; using
recurrence relations to analyze recursive algorithms

• Algorithmic strategies: Brute-force algorithms; greedy algorithms; divide-and-
conquer; backtracking; heuristics

• Fundamental computing algorithms: Simple numerical algorithms; sequential and
binary search algorithms; sorting algorithms

• Overview of programming languages: History of programming languages; brief survey
of programming paradigms; the role of language translation in the programming
process

• Fundamental issues in language design: General principles of language design; design
goals; typing regimes; data structure models; control structure models; abstraction
mechanisms

• Virtual machines: The concept of a virtual machine; hierarchy of virtual machines;
intermediate languages; security issues arising from running code on an alien machine

• Introduction to language translation: Comparison of interpreters and compilers;
language translation phases; machine-dependent and machine-independent aspects of
translation; language translation as a software engineering activity

• Basic computability theory: Tractable and intractable problems; the existence of
noncomputable functions

• Fundamental techniques in graphics: Hierarchy of graphics software; using a graphics
API

• Software design: Fundamental design concepts and principles; software architecture;
structured design; object-oriented analysis and design; component-level design; design
for reuse

• Software tools and environments: Programming environments; testing tools

CC2001 Computer Science volume – 196 –
Final Report (December 15, 2001)

Units covered:
PF1 Fundamental programming constructs 4 core hours (of 9)
PF2 Algorithms and problem-solving 1 core hour (of 6)
PF3 Fundamental data structures 6 core hours (of 14)
PF5 Event-driven programming 2 core hours (of 4)
AL1 Basic algorithmic analysis 2 core hours (of 4)
AL2 Algorithmic strategies 2 core hours (of 6)
AL3 Fundamental computing algorithms 4 core hours (of 12)
PL1 Overview of programming languages 1 core hour (of 2)
PL2 Virtual machines 1 core hour
PL4 Declarations and types 2 core hours (of 3)
PL5 Abstraction mechanisms 1 core hour (of 3)
PL6 Object-oriented programming 8 core hours (of 10)
SE1 Software design 2 core hours (of 8)
SE2 Using APIs 2 core hours (of 5)
SE3 Software tools and environments 1 core hour (of 3)
SE5 Software requirements and specifications 1 core hour (of 4)

CC2001 Computer Science volume – 197 –
Final Report (December 15, 2001)

B.2 Other first-year courses
The courses in this section are arranged in numerical order.

CS105. Discrete Structures I
Introduces the foundations of discrete mathematics as they apply to computer science,
focusing on providing a solid theoretical foundation for further work. Topics include
functions, relations, sets, simple proof techniques, Boolean algebra, propositional logic,
digital logic, elementary number theory, and the fundamentals of counting.

Prerequisites: Mathematical preparation sufficient to take calculus at the college level.

Syllabus:
• Introduction to logic and proofs: Direct proofs; proof by contradiction; mathematical

induction
• Fundamental structures: Functions (surjections, injections, inverses, composition);

relations (reflexivity, symmetry, transitivity, equivalence relations); sets (Venn
diagrams, complements, Cartesian products, power sets); pigeonhole principle;
cardinality and countability

• Boolean algebra: Boolean values; standard operations on Boolean values; de Morgan’s
laws

• Propositional logic: Logical connectives; truth tables; normal forms (conjunctive and
disjunctive); validity

• Digital logic: Logic gates, flip-flops, counters; circuit minimization
• Elementary number theory: Factorability; properties of primes; greatest common

divisors and least common multiples; Euclid’s algorithm; modular arithmetic; the
Chinese Remainder Theorem

• Basics of counting: Counting arguments; pigeonhole principle; permutations and
combinations; binomial coefficients

Units covered:
DS1 Functions, relations, and sets 9 hours (6 core + 3)
DS2 Basic logic 5 core hours (of 10)
DS3 Proof techniques 4 core hours (of 12)
DS4 Basics of counting 9 hours (5 core + 4)
AR1 Digital logic and digital systems 3 core hours (of 6)

Elementary number theory 5 hours
Elective topics 5 hours

Notes:
This implementation of the Discrete Structures area (DS) divides the material into two
courses. CS105 covers the first half of the material and is followed by CS106, which
completes the core topic coverage. Because the material is stretched over two courses—
as opposed to CS115 which covers the material in a single course—many of the units are
given more coverage than is strictly required in the core. Similarly, the two-course
version includes additional topics, reducing the need to cover these topics in more
advanced courses, such as the introductory course in algorithmic analysis (CS210).

Although the principal focus is discrete mathematics, the course is likely to be more
successful if it highlights applications whose solutions require proof, logic, and counting.
For example, the number theory section could be developed in the context of public-key

CC2001 Computer Science volume – 198 –
Final Report (December 15, 2001)

cryptography, so that students who tend to focus on the applications side of computer
science will have an incentive to learn the underlying theoretical material.

CC2001 Computer Science volume – 199 –
Final Report (December 15, 2001)

CS106. Discrete Structures II
Continues the discussion of discrete mathematics introduced in CS105. Topics in the
second course include predicate logic, recurrence relations, graphs, trees, matrices,
computational complexity, elementary computability, and discrete probability.

Prerequisites: CS105

Syllabus:
• Review of previous course
• Predicate logic: Universal and existential quantification; modus ponens and modus

tollens; limitations of predicate logic
• Recurrence relations: Basic formulae; elementary solution techniques
• Graphs and trees: Fundamental definitions; simple algorithms ; traversal strategies;

proof techniques; spanning trees; applications
• Matrices: Basic properties; applications
• Computational complexity: Order analysis; standard complexity classes
• Elementary computability: Countability and uncountability; diagonalization proof to

show uncountability of the reals; definition of the P and NP classes; simple
demonstration of the halting problem

• Discrete probability: Finite probability spaces; conditional probability, independence,
Bayes’ rule; random events; random integer variables; mathematical expectation

Units covered:
DS2 Basic logic 7 core hours (of 10)
DS3 Proof techniques 8 core hours (of 12)
DS5 Graphs and trees 4 core hours
DS6 Discrete probability 6 core hours
AL1 Basic algorithmic analysis 2 core hours (of 4)
AL5 Basic computability 3 core hours (of 6)
AL6 The complexity classes P and NP 2 hours

Matrices 3 hours
Elective topics 5 hours

Notes:
This implementation of the Discrete Structures area (DS) divides the material into two
courses: CS105 and CS106. For programs that wish to accelerate the presentation of this
material, there is also CS115, which covers the core topics in a single course. The two-
course sequence, however, covers some additional material that is not in the compressed
version, primarily in the Algorithms and Complexity area (AL). As a result, the
introductory course in algorithmic analysis (CS210) can devote more time to advanced
topics if an institution adopts the two-course implementation.

Like CS105, this course introduces mathematical topics in the context of applications that
require those concepts as tools. For this course, likely applications include transportation
network problems (such as the traveling salesperson problem) and resource allocation.

CC2001 Computer Science volume – 200 –
Final Report (December 15, 2001)

CS115. Discrete Structures for Computer Science
Offers an intensive introduction to discrete mathematics as it is used in computer science.
Topics include functions, relations, sets, propositional and predicate logic, simple circuit
logic, proof techniques, elementary combinatorics, and discrete probability.

Prerequisites: Mathematical preparation sufficient to take calculus at the college level.

Syllabus:
• Fundamental structures: Functions (surjections, injections, inverses, composition);

relations (reflexivity, symmetry, transitivity, equivalence relations); sets (Venn
diagrams, complements, Cartesian products, power sets); pigeonhole principle;
cardinality and countability

• Basic logic: Propositional logic; logical connectives; truth tables; normal forms
(conjunctive and disjunctive); validity; predicate logic; limitations of predicate logic;
universal and existential quantification; modus ponens and modus tollens

• Digital logic: Logic gates, flip-flops, counters; circuit minimization
• Proof techniques: Notions of implication, converse, inverse, contrapositive, negation,

and contradiction; the structure of formal proofs; direct proofs; proof by
counterexample; proof by contraposition; proof by contradiction; mathematical
induction; strong induction; recursive mathematical definitions; well orderings

• Basics of counting: Counting arguments; pigeonhole principle; permutations and
combinations; recurrence relations

• Discrete probability: Finite probability spaces; conditional probability, independence,
Bayes’ rule; random events; random integer variables; mathematical expectation

Units covered:
DS1 Functions, relations, and sets 6 core hours
DS2 Basic logic 10 core hours
DS3 Proof techniques 9 core hours (of 12)
DS4 Basics of counting 5 core hours
DS6 Discrete probability 6 core hours
AR1 Digital logic and digital systems 3 core hours (of 6)

Elective topics 1 hour

Notes:
This implementation of the Discrete Structures area (DS) compresses the core material
into a single course. Although such a strategy is workable, many institutions will prefer
to use two courses to cover this material in greater depth. For an implementation that
uses the two-course model, see the descriptions of CS105 and CS106.

CS120. Introduction to Computer Organization
Introduces the concept of computers and information systems by presenting the process
of computation as a hierarchy of virtual machines, beginning with the hardware and
moving upward through various levels of increasingly sophisticated software. This
course outlines the facilities provided by each virtual machine, along with the
mechanisms and software tools that lead to the realization of the hierarchy.

Prerequisites: none

Syllabus:
• The fundamental elements of digital logic and their use in computer construction

CC2001 Computer Science volume – 201 –
Final Report (December 15, 2001)

• Register-level description of computer execution and the functional organization of a
computer

• Representation of data of different kinds
• The elements of machine- and assembly-language programming
• The role and function of programming languages and their associated libraries
• The role and function of an operating system (including networking and distributed

systems)
• Applications including description of the functionality of the relevant software (word

processors, databases, browsers, search engines, and so forth)
• Human-computer interaction and its importance for interface software
• Introduction to the World-Wide Web: Fundamentals of the web; browsers; search

engines; information retrieval; web-page construction
• Networked information: Information servers; newsgroups; search strategies;

information storage and retrieval; underlying principles.
• Intellectual property issues

Units covered:
AR2 Machine level representation of data 1 core hour (of 3)
AR3 Assembly level machine organization 3 core hours (of 9)
AR6 Functional organization 1 core hour (of 7)
OS2 Operating system principles 1 core hour (of 2)
NC1 Introduction to net-centric computing 1 core hour (of 2)
NC2 Communication and networking 4 core hours (of 7)
NC4 The web as an example of client-server computing 2 core hours (of 3)
PL3 Introduction to language translation 1 core hour (of 2)
HC1 Foundations of human-computer interaction 3 core hours (of 6)
HC2 Building a simple graphical user interface 2 core hours
HC3 Human-centered software evaluation 3 hours
HC4 Human-centered software development 3 hours
IS1 Fundamental issues in intelligent systems 1 core hour
IS2 Search and constraint satisfaction 2 core hours (of 5)
IM1 Information models and systems 2 core hours (of 3)
IM2 Database systems 1 core hour (of 3)
SP1 History of computing 1 core hour
SP2 Social context of computing 2 core hours (of 3)
SP4 Professional and ethical responsibilities 1 core hour (of 3)
SP6 Intellectual property 1 core hour (of 3)

Elective topics 4 hours

Notes:
Computer systems appear to be immensely complex. Yet when viewed as a hierarchy of
abstract (or virtual) machines, their construction takes on an elegance and sophistication
that illustrates vital aspects of the discipline of computer science. The purpose of this
course is to consider the various commonly understood virtual machines, to consider the
facilities and mechanisms provided by each virtual machine, and to consider the nature of
the mechanisms or software tools that lead to the realisation of the different levels in the
hierarchy.

In addressing this material there is a challenge in terms of ensuring that the material is
presented in a manner that is interesting and exciting. An up-to-date description of a

CC2001 Computer Science volume – 202 –
Final Report (December 15, 2001)

computer system can help to set expectations and provide motivation for further study.
The treatment should recognize the importance not just of traditional data but also of
sound, video, and so forth.

Given the wide range of resources available via the World-Wide Web, there is enormous
scope for using this module to teach students a range of personal and transferable skills:
undergraduate research, presentational skills of various kinds, and so on. At the same
time, it is essential that students recognize there are problems in dealing with vast
volumes of information.

For their own purposes, students will need to be able to cope with a range of e-mail
messages of varying importance, documents or information for different classes, web site
references, software tools, case studies and illustrations, and so on. If properly and
carefully structured, these tools can be used to create environments for efficient and
effective operation. Thus, the material in this course should be of high value to students.
In more general terms, the same principles can be used to create environments with a
range of possible uses: learning, desk-top publishing, project management, information
retrieval and web searching, computer graphics and animation, developing computer
games, and so on. The principles outlined in this course should provide a framework for
these other areas.

CS130. Introduction to the World-Wide Web
Introduces students to the world of computer science through the World-Wide Web,
focusing on the techniques of web-page creation. No programming background is
required, although students will learn some programming through scripting languages.

Prerequisites: none

Syllabus:
• Introduction to the Internet: Background and history of networking and the Internet;

overview of network architectures
• Communication and networking: Overview of network standards and protocols; circuit

switching vs. packet switching
• Introduction to the World-Wide Web: Web technologies; the HTML protocol; the

format of a web page; support tools for web site creation
• Multimedia data technologies: Sound and audio, image and graphics, animation and

video; input and output devices; tools to support multimedia development
• Interactivity on the web: Scripting languages; the role of applets
• Human-computer interaction: HCI aspects of web-page design; graphical user-

interface design
• Network management: Overview of the issues of network management; use of

passwords and access control mechanisms; domain names and name services; issues
for Internet service providers; security issues and firewalls;

• Compression and decompression: Analog and digital representations; overview of
encoding and decoding algorithms; lossless and lossy compression

• Network security: Fundamentals of cryptography; secret-key algorithms; public-key
algorithms; authentication protocols; digital signatures; examples

• Software tools and environments: Web-page development tools
• Intellectual property: Foundations of intellectual property;copyrights, patents, and

trade secrets; issues regarding the use of intellectual property on the web

CC2001 Computer Science volume – 203 –
Final Report (December 15, 2001)

• Privacy and civil liberties: Ethical and legal basis for privacy protection; freedom of
expression in cyberspace; international and intercultural implications

Units covered:
NC1 Introduction to net-centric computing 2 core hours
NC2 Communication and networking 2 core hours (of 7)
NC3 Network security 3 core hours
NC4 The web as an example of client-server computing 3 core hours
NC5 Building web applications 3 hours
NC6 Network management 2 hours
NC7 Compression and decompression 3 hours
NC8 Multimedia data technologies 3 hours
HC5 Graphical user-interface design 2 hours
HC7 HCI aspects of multimedia systems 2 hours
SE3 Software tools and environments 2 core hours (of 3)
SP6 Intellectual property 2 core hours (of 3)
SP7 Privacy and civil liberties 2 core hours

Elective topics 9 hours

CC2001 Computer Science volume – 204 –
Final Report (December 15, 2001)

B.3 Intermediate courses
Although the courses in this section are typically identified with thematic tracks—topics,
compressed, systems, and web-based—the course numbers are unique. This property
makes it useful to list these courses in numerical order. If the same course appears in
more than one track, all appropriate suffixes are shown.

CS210{C,S,T,W}. Algorithm Design and Analysis
Introduces formal techniques to support the design and analysis of algorithms, focusing
on both the underlying mathematical theory and practical considerations of efficiency.
Topics include asymptotic complexity bounds, techniques of analysis, algorithmic
strategies, and an introduction to automata theory and its application to language
translation.

Prerequisites: introduction to computer science (any implementation of CS103 or
CS112), discrete structures (CS106 or CS115)

Syllabus:
• Review of proof techniques
• Basic algorithmic analysis: Asymptotic analysis of upper and average complexity

bounds; best, average, and worst case behaviors; big-O, little-o, Ω, and Ø notation;
standard complexity classes; empirical measurements of performance; time and space
tradeoffs in algorithms; using recurrence relations to analyze recursive algorithms

• Fundamental algorithmic strategies: Brute-force; greedy; divide-and-conquer;
backtracking; branch-and-bound; heuristics; pattern matching and string/text
algorithms; numerical approximation

• Fundamental data structures: Implementation strategies for graphs and trees;
performance issues for data structures

• Graph and tree algorithms: Depth- and breadth-first traversals; shortest-path algorithms
(Dijkstra’s and Floyd’s algorithms); transitive closure (Floyd’s algorithm); minimum
spanning tree (Prim’s and Kruskal’s algorithms); topological sort

• Automata theory: Finite-state machines; Turing machines; context-free grammars;
uncomputable functions; the halting problem; implications of uncomputability

• Introduction to language translation: Comparison of interpreters and compilers;
language translation phases; machine-dependent and machine-independent aspects of
translation; language translation as a software engineering activity

Units covered:
DS3 Proof techniques 3 core hours (of 12)
DS5 Graphs and trees 4 core hours
PF2 Algorithms and problem-solving 3 core hours (of 6)
PF3 Fundamental data structures 3 core hours (of 14)
PL3 Introduction to language translation 2 core hours
AL1 Basic algorithmic analysis 2 core hours (of 4)
AL2 Algorithmic strategies 6 core hours
AL3 Fundamental computing algorithms 6 core hours (of 12)
AL5 Basic computability 6 core hours
AL6 The complexity classes P and NP 2 hours
AL7 Automata theory 2 hours

Elective topics 1 hour

CC2001 Computer Science volume – 205 –
Final Report (December 15, 2001)

Notes:
The topic of algorithmic analysis is central to much of computer science. The thrust of
this course is to explore and examine a range of algorithms that can be used to solve
practical problems. Each algorithm possesses strengths and weaknesses. Moreover, the
performance or any particular algorithm typically varies according to the size and nature
of the input data. Students need a thorough understanding of the tools of analysis in order
to select the right algorithm for the job.

Students are most receptive to the material presented in this course if they understand the
connections between theory and practice. To this end, instructors should try to find ways
to reinforce the theoretical topics through practical activity. It is also important for
instructors to provide compelling demonstrations of the enormous differences in running
time that can occur when algorithms have different complexity characteristics. The
importance of complexity measures must be made real.

Algorithmic animation can be a powerful tool toward getting students to understand both
the algorithms themselves and the associated complexity measures. Tools for creating
graphical animations of classical algorithms are widely available on the web. These tools
provide visible evidence of the complexity measures and thus reinforce the theoretical
results.

It is also possible to take a more formal approach to this topic that focuses on formal
specification of algorithms and proofs of correctness, possibly supported by appropriate
specification and verification tools. A more informal approach, however, is likely to
appeal to a wider spectrum of students.

Students who complete this course should be able to perform the following tasks:

• Explain the mathematical concepts used in describing the complexity of an algorithm.
• Select and apply algorithms appropriate to a particular situation.
• Employ one from a range of strategies leading to the design of algorithms to serve

particular purposes.
• Explain the trade-offs that exist between a range of algorithms that possess the same

functionality.

CC2001 Computer Science volume – 206 –
Final Report (December 15, 2001)

CS220{C,S,T}. Computer Architecture
Introduces students to the organization and architecture of computer systems, beginning
with the standard von Neumann model and then moving forward to more recent
archictural concepts.

Prerequisites: introduction to computer science (any implementation of CS103 or
CS112), discrete structures (CS106 or CS115)

Syllabus:
• Digital logic: Fundamental building blocks (logic gates, flip-flops, counters, registers,

PLA); logic expressions, minimization, sum of product forms; register transfer
notation; physical considerations (gate delays, fan-in, fan-out)

• Data representation: Bits, bytes, and words; numeric data representation and number
bases; fixed- and floating-point systems; signed and twos-complement representations;
representation of nonnumeric data (character codes, graphical data); representation of
records and arrays

• Assembly level organization: Basic organization of the von Neumann machine; control
unit; instruction fetch, decode, and execution; instruction sets and types (data
manipulation, control, I/O); assembly/machine language programming; instruction
formats; addressing modes; subroutine call and return mechanisms; I/O and interrupts

• Memory systems: Storage systems and their technology; coding, data compression,
and data integrity; memory hierarchy; main memory organization and operations;
latency, cycle time, bandwidth, and interleaving; cache memories (address mapping,
block size, replacement and store policy); virtual memory (page table, TLB); fault
handling and reliability

• Interfacing and communication: I/O fundamentals: handshaking, buffering,
programmed I/O, interrupt-driven I/O; interrupt structures: vectored and prioritized,
interrupt acknowledgment; external storage, physical organization, and drives; buses:
bus protocols, arbitration, direct-memory access (DMA); introduction to networks;
multimedia support; raid architectures

• Functional organization: Implementation of simple datapaths; control unit: hardwired
realization vs. microprogrammed realization; instruction pipelining; introduction to
instruction-level parallelism (ILP)

• Multiprocessor and alternative architectures: Introduction to SIMD, MIMD, VLIW,
EPIC; systolic architecture; interconnection networks; shared memory systems; cache
coherence; memory models and memory consistency

• Performance enhancements: RISC architecture; branch prediction; prefetching;
scalability

• Contemporary architectures: Hand-held devices; embedded systems; trends in
processor architecture

CC2001 Computer Science volume – 207 –
Final Report (December 15, 2001)

Units covered:
AR1 Digital logic and digital systems 3 core hours (of 6)
AR2 Machine level representation of data 3 core hours
AR3 Assembly level machine organization 9 core hours
AR4 Memory system organization and architecture 5 core hours
AR5 Interfacing and communication 3 core hours
AR6 Functional organization 7 core hours
AR7 Multiprocessing and alternative architectures 3 core hours
AR8 Performance enhancements 3 hours

Contemporary architectures 2 hours
Elective topics 2 hours

Notes:
Differences in the internal structure and organization of a computer lead to significant
differences in performance and functionality, giving rise to an extraordinary range of
computing devices, from hand-held computers to large-scale, high-performance
machines. This course addresses the various options involved in designing a computer
system, the range of design considerations, and the trade-offs involved in the design
process.

A key issue in relation to this course is motivation. It is important to try to heighten the
motivation of both students and faculty into seeing hardware design as an increasingly
interesting, relevant, and challenging area. One approach is to include a significant
laboratory component with the course that gives students the opportunity to build their
own computer system. In doing so, they will come to appreciate the underlying issues at
a much greater level of detail. In addition, those students will experience a sense of
accomplishment in the hardware area similar to what most students describe when they
complete a significant software project.

Software tools can play an important role in this course, particularly when funding for a
hardware laboratory is not available. These tools include, for example, instruction set
simulators, software that will simulate cache performance, benchmark systems that will
evaluate performance, and so on.

Students who complete this course should be able to perform the following tasks:

• Write and debug simple programs using assembly code.
• Explain the principles underlying the design and development of computer systems for

a variety of purposes.
• Trace the influences of important computing developments (such as compiler

technology, networking, the web, multimedia, safety, security) on the architecture of
computer systems.

• Outline the architectural features of a modern computer system.

CC2001 Computer Science volume – 208 –
Final Report (December 15, 2001)

CS221W. Architecture and Operating Systems
Presents a combined introduction to the concepts of architecture and operating systems.

Prerequisites: introduction to computer science (any implementation of CS103 or
CS112), discrete structures (CS106 or CS115)

Syllabus:
• Digital logic and digital systems: Fundamental building blocks; logic expressions,

minimization, sum of product forms; register transfer notation; physical considerations
• Machine level representation of data: Bits, bytes, and words; numeric data

representation and number bases; fixed- and floating-point systems; signed and twos-
complement representations; representation of nonnumeric data; representation of
records and arrays

• Assembly level machine organization: Basic organization of the von Neumann
machine; control unit; instruction fetch, decode, and execution; instruction sets and
types; assembly/machine language programming; instruction formats; addressing
modes; subroutine call and return mechanisms; I/O and interrupts

• Memory system organization and architecture: Storage systems and their technology;
coding, data compression, and data integrity; memory hierarchy; main memory
organization and operations; latency, cycle time, bandwidth, and interleaving; cache
memories; virtual memory; fault handling and reliability

• Functional organization: Implementation of simple datapaths; control unit; instruction
pipelining; introduction to instruction-level parallelism

• Overview of operating systems: Role and purpose of the operating system; history of
operating system development; functionality of a typical operating system;
mechanisms to support client-server models, hand-held devices; design issues;
influences of security, networking, multimedia, windows

• Operating system principles: Structuring methods; abstractions, processes, and
resources; concepts of application program interfaces; applications needs and the
evolution of hardware/software techniques; device organization; interrupts; concept of
user/system state and protection, transition to kernel mode

• Concurrency: dispatching and context switching; the role of interrupts; concurrent
execution; the “mutual exclusion” problem and some solutions

• Scheduling and dispatch: Preemptive and nonpreemptive scheduling; schedulers and
policies; processes and threads

• Memory management: Review of physical memory and memory management
hardware; overlays, swapping, and partitions; paging and segmentation; placement and
replacement policies; working sets and thrashing; caching

Units covered:
AR1 Digital logic and digital systems 3 core hours (of 6)
AR2 Machine level representation of data 3 core hours
AR3 Assembly level machine organization 9 core hours
AR4 Memory system organization and architecture 5 core hours
AR6 Functional organization 7 core hours
OS1 Overview of operating systems 2 core hours
OS2 Operating system principles 2 core hours
OS3 Concurrency 2 core hours (of 6)
OS4 Scheduling and dispatch 2 core hours (of 3)
OS5 Memory management 5 core hours

CC2001 Computer Science volume – 209 –
Final Report (December 15, 2001)

CS222W. Architectures for Networking and Communication
Presents those aspects of computer architecture that are central to communications and
networking.

Prerequisites: CS221W

Syllabus:
• Distributed algorithms: Consensus and election; termination detection; fault tolerance;

stabilization
• Interfacing and communication: I/O fundamentals; interrupt structures; external

storage, physical organization, and drives; buses; introduction to networks; multimedia
support; RAID architectures

• Multiprocessing and alternative architectures: Introduction to SIMD, MIMD, VLIW,
EPIC; systolic architecture; interconnection networks; shared memory systems; cache
coherence; memory models and memory consistency

• Architecture for networks and distributed systems: Introduction to LANs and WANs;
layered protocol design, ISO/OSI, IEEE 802; impact of architectural issues on
distributed algorithms; network computing; distributed multimedia

• Concurrency: States and state diagrams; structures; dispatching and context switching;
the role of interrupts; concurrent execution; the “mutual exclusion” problem and some
solutions; deadlock; models and mechanisms; producer-consumer problems and
synchronization; multiprocessor issues

• Scheduling and dispatch: Review of processes and scheduling; deadlines and real-time
issues

• Real-time and embedded systems: Process and task scheduling; memory/disk
management requirements in a real-time environment; failures, risks, and recovery;
special concerns in real-time systems

• Fault tolerance: Fundamental concepts; spatial and temporal redundancy; methods
used to implement fault tolerance; examples of reliable systems

• System performance evaluation: Why system performance needs to be evaluated; what
is to be evaluated; policies for caching, paging, scheduling, memory management,
security, and so forth; evaluation models; how to collect evaluation data

• Scripting: Scripting and the role of scripting languages; basic system commands;
creating scripts, parameter passing; executing a script; influences of scripting on
programming

Units covered:
AL4 Distributed algorithms 3 core hours
AR5 Interfacing and communication 3 core hours
AR7 Multiprocessing and alternative architectures 3 core hours
AR9 Architecture for networks and distributed systems 5 hours
OS3 Concurrency 4 core hours (of 6)
OS4 Scheduling and dispatch 2 core hours (of 3)
OS9 Real-time and embedded systems 5 hours
OS10 Fault tolerance 5 hours
OS11 System performance evaluation 4 hours
OS12 Scripting 3 hours

Elective topics 3 hours

CC2001 Computer Science volume – 210 –
Final Report (December 15, 2001)

CS225{S,T}. Operating Systems
Introduces the fundamentals of operating systems design and implementation. Topics
include an overview of the components of an operating system, mutual exclusion and
synchronization, implementation of processes, scheduling algorithms, memory
management, and file systems.

Prerequisites: CS220

Syllabus:
• Overview: Role and purpose of operating systems; history of operating system

development; functionality of a typical operating system; design issues (efficiency,
robustness, flexibility, portability, security, compatibility)

• Basic principles: Structuring methods; abstractions, processes, and resources; design of
application programming interfaces (APIs); device organization; interrupts;
user/system state transitions

• Concurrency: The idea of concurrent execution; states and state diagrams;
implementation structures (ready lists, process control blocks, and so forth);
dispatching and context switching; interrupt handling in a concurrent environment

• Mutual exclusion: Definition of the “mutual exclusion” problem; deadlock detection
and prevention; solution strategies; models and mechanisms (semaphores, monitors,
condition variables, rendezvous); producer-consumer problems; synchronization;
multiprocessor issues

• Scheduling: Preemptive and nonpreemptive scheduling; scheduling policies; processes
and threads; real-time issues

• Memory management: Review of physical memory and memory management
hardware; overlays, swapping, and partitions; paging and segmentation; page
placement and replacement policies; working sets and thrashing; caching

• Device management: Characteristics of serial and parallel devices; abstracting device
differences; buffering strategies; direct memory access; recovery from failures

• File systems: Fundamental concepts (data, metadata, operations, organization,
buffering, sequential vs. nonsequential files); content and structure of directories; file
system techniques (partitioning, mounting and unmounting, virtual file systems);
memory-mapped files; special-purpose file systems; naming, searching, and access;
backup strategies

• Security and protection: Overview of system security; policy/mechanism separation;
security methods and devices; protection, access, and authentication; models of
protection; memory protection; encryption; recovery management

Units covered:
AL4 Distributed algorithms 3 core hours
OS1 Overview of operating systems 2 core hours
OS2 Operating system principles 2 core hours
OS3 Concurrency 6 core hours
OS4 Scheduling and dispatch 3 core hours
OS5 Memory management 5 core hours
OS6 Device management 4 hours
OS7 Security and protection 4 hours
OS8 File systems 5 hours
OS11 System performance evaluation 2 hours

Elective topics 4 hours

CC2001 Computer Science volume – 211 –
Final Report (December 15, 2001)

CS226{C,S}. Operating Systems and Networking
Introduces the fundamentals of operating systems together with the basics of networking
and communications.

Prerequisites: introduction to computer science (any implementation of CS103 or
CS112), discrete structures (CS106 or CS115)

Syllabus:
• Introduction to event-driven programming
• Using APIs: API programming; class browsers and related tools; programming by

example; debugging in the API environment
• Overview of operating systems: Role and purpose of the operating system; history of

operating system development; functionality of a typical operating system
• Operating system principles: Structuring methods; abstractions, processes, and

resources; concepts of application program interfaces; device organization; interrupts;
concepts of user/system state and protection

• Introduction to concurrency: Synchronization principles; the “mutual exclusion”
problem and some solutions; deadlock avoidance

• Introduction to concurrency: States and state diagrams; structures; dispatching and
context switching; the role of interrupts; concurrent execution; the “mutual exclusion”
problem and some solutions; deadlock; models and mechanisms; producer-consumer
problems and synchronization

• Scheduling and dispatch: Preemptive and nonpreemptive scheduling; schedulers and
policies; processes and threads; deadlines and real-time issues

• Memory management: Review of physical memory and memory management
hardware; overlays, swapping, and partitions; paging and segmentation; placement and
replacement policies; working sets and thrashing; caching

• Introduction to distributed algorithms: Consensus and election; fault tolerance
• Introduction to net-centric computing: Background and history of networking and the

Internet; network architectures; the range of specializations within net-centric
computing

• Introduction to networking and communications: Network architectures; issues
associated with distributed computing; simple network protocols; APIs for network
operations

• Introduction to the World-Wide Web: Web technologies; characteristics of web
servers; nature of the client-server relationship; web protocols; support tools for web
site creation and web management

• Network security: Fundamentals of cryptography; secret-key algorithms; public-key
algorithms; authentication protocols; digital signatures; examples

CC2001 Computer Science volume – 212 –
Final Report (December 15, 2001)

Units covered:
PF5 Event-driven programming 2 core hours (of 4)
AL4 Distributed algorithms 3 core hours
OS1 Overview of operating systems 2 core hours
OS2 Operating system principles 2 core hours
OS3 Concurrency 6 core hours
OS4 Scheduling and dispatch 3 core hours
OS5 Memory management 5 core hours
NC1 Introduction to net-centric computing 2 core hours
NC2 Communication and networking 7 core hours
NC3 Network security 3 core hours
NC4 The web as an example of client-server computing 3 core hours
PL6 Object-oriented programming 2 core hours (of 10)

Notes:
Because this course includes a range of topics, CS226 is an example of a “crosscutting”
approach to designing a core. In a more traditional implementation of the core, an
institution might offer one course in operating systems and another in networks. There is,
however, a good deal of interplay between these topics. It therefore makes sense to
design a course that looks at these pieces of system software together, particularly since
the web is extremely appealing to students. Combining the operating system topics with
the discussion of networking helps motivate students and stimulates their thinking about
both the effect of the web on operating systems and the more general principles involved.

The issue of motivation is paramount in the design of the course. The area of operating
systems is often regarded as difficult for both students and faculty, but nonetheless
contains many ideas of relevance to all computer scientists. Faculty must ask themselves
how they can make operating systems relevant to undergraduates. This consideration
must drive the choice of approach to learning and teaching. To this end, students must
see these issues as related to the systems that they use. As an example, students might be
asked to consider the impact on the operating system of such developments as
networking, multimedia, security, and hand-held devices. Similarly, one could also ask
about the impact of other developments, such as the following:

• Playing music on a CD at the same time as using the computer
• Downloading TV pictures onto a window
• Docking systems or devices such as digital cameras and hand-held computers
• Client-server architectures

In pursuing any course on operating systems, students need to be made aware of the
wider relevance of many of the ideas. It is therefore useful to highlight the following
connections:

• The cache idea, while relevant at the hardware level, shows up again in the context of
the web and downloading material from web sites.

• The concepts that arise in the discussion of virtual memory come up again in the
development of virtual environments.

• The material on concurrency is relevant in the wider context of concurrent and parallel
programming.

• The material on resource allocation and scheduling features as a major component of
operations research.

CC2001 Computer Science volume – 213 –
Final Report (December 15, 2001)

• Much of the course material is relevant to the design and construction of real-time and
dependable systems.

Students are likely to take a greater interest in operating systems if they see themselves as
working in the context of a real system rather than some highly simplified and more
abstract simulation. In this regard, the open-source movement has made an important
contribution to pedagogy in the operating systems area, because the source code for
several well-known operating systems is now available free of charge. These public-
domain resources make it easier to illustrate aspects of operating systems and can often
provide useful examples of how different systems implement particular features. It is
worth observing that many of the students are likely to be fired up with the idea of
installing Linux (for example) on their own machines.

Students who complete this course should be able to perform the following tasks:

• Summarize the principles underlying the design and construction of a typical operating
system, giving particular recognition to the wider applicability of the ideas and the
influences from such developments as high-level languages, networking, multimedia,
and security concerns.

• Use the facilities of the operating system to achieve a range of simple tasks, including
enhancing the functionality by integrating new software components.

• Identify the security issues associated with distributed web applications and be able to
suggest mechanisms leading to a resolution of these problems.

CC2001 Computer Science volume – 214 –
Final Report (December 15, 2001)

CS230{T,W}. Net-centric Computing
Introduces the structure, implementation, and theoretical underpinnings of computer
networking and the applications that have been enabled by that technology.

Prerequisites: CS222W or CS225T

Syllabus:
• Communication and networking: Network standards and standardization bodies; the

ISO 7-layer reference model in general and its instantiation in TCP/IP; circuit
switching and packet switching; streams and datagrams; physical layer networking
concepts; data link layer concepts; Internetworking and routing; transport layer
services

• The web as an example of client-server computing: Web technologies; characteristics
of web servers; role of client computers; nature of the client-server relationship; web
protocols; support tools for web-site creation and web management; developing
Internet information servers; publishing information and applications

• Building web applications: Protocols at the application layer; principles of web
engineering; database-driven web sites; remote procedure calls; lightweight distributed
objects; the role of middleware; support tools; security issues in distributed object
systems; enterprise-wide web-based applications

• Network management: Review of the issues of network management; issues for
Internet service providers; security issues and firewalls; quality of service issues

• Compression and decompression: Review of basic data compression; audio
compression and decompression; image compression and decompression; video
compression and decompression; performance issues

• Multimedia data technologies: Review of multimedia technologies; multimedia
standards; capacity planning and performance issues; input and output devices; MIDI
keyboards, synthesizers; storage standards; multimedia servers and file systems; tools
to support multimedia development

• Wireless and mobile computing: Overview of the history, evolution, and compatibility
of wireless standards; the special problems of wireless and mobile computing; wireless
local area networks and satellite-based networks; wireless local loops ; mobile Internet
protocol; mobile aware adaption; extending the client-server model to accommodate
mobility; mobile data access; the software packages to support mobile and wireless
computing; the role of middleware and support tools; performance issues; emerging
technologies

Units covered:
PF5 Event-driven programming 2 core hours (of 4)
NC1 Introduction to net-centric computing 2 core hours
NC2 Communication and networking 7 core hours
NC3 Network security 3 core hours
NC4 The web as an example of client-server computing 3 core hours
NC5 Building web applications 8 hours
NC6 Network management 2 hours
NC7 Compression and decompression 3 hours
NC8 Multimedia data technologies 3 hours
NC9 Wireless and mobile computing 4 hours
PL6 Object-oriented programming 2 core hours (of 10)

Elective topics 1 hour

CC2001 Computer Science volume – 215 –
Final Report (December 15, 2001)

CS240S. Programming Language Translation
Introduces the theory and practice of programming language translation. Topics include
compiler design, lexical analysis, parsing, symbol tables, declaration and storage
management, code generation, and optimation techniques.

Prerequisites: CS210, CS220

Syllabus:
• Overview of programming languages: History of programming languages; brief survey

of programming paradigms; the role of language translation in the programming
process

• Fundamental issues in language design: General principles of language design; design
goals; typing regimes; data structure models; control structure models; abstraction
mechanisms

• Virtual machines: The concept of a virtual machine; hierarchy of virtual machines;
intermediate languages

• Introduction to language translation: Comparison of interpreters and compilers;
language translation phases; machine-dependent and machine-independent aspects of
translation; language translation as a software engineering activity

• Lexical analysis: Application of regular expressions in lexical scanners; hand-coded
vs. automatically-generated scanners; formal definition of tokens; implementation of
finite-state automata

• Syntactic analysis: Formal definition of grammars; BNF and EBNF; bottom-up vs.
top-down parsing; tabular vs. recursive-descent parsers; error handling; automatic
generation of tabular parsers; symbol table management; the use of tools in support of
the translation process

• Models of execution control: Order of evaluation of subexpressions; exceptions and
exception handling; runtime systems

• Declaration, modularity, and storage management: Declaration models;
parameterization mechanisms; type parameterization; mechanisms for sharing and
restricting visibility of declarations; garbage collection

• Type systems: Data type as set of values with set of operations; data types; type-
checking models; semantic models of user-defined types; parametric polymorphism;
subtype polymorphism; type-checking algorithms

• Interpretation: Iterative vs. recursive interpretation; iterative interpretation of
intermediate code; recursive interpretation of a parse tree

• Code generation: Intermediate and object code; intermediate representations;
implementation of code generators; code generation by tree walking; context-sensitive
translation; register use

• Optimization: Machine-independent optimization; data-flow analysis; loop
optimizations; machine-dependent optimization

Units covered:
PL1 Overview of programming languages 2 core hours
PL2 Virtual machines 1 core hour
PL3 Introduction to language translation 2 core hours
PL8 Language translation systems 15 hours
PL9 Type systems 4 hours

Elective topics 16 hours

CC2001 Computer Science volume – 216 –
Final Report (December 15, 2001)

Notes:
This course has two distinct but interrelated goals. First, it explores the theory of
language translation. Second, it shows how to apply this theory to build compilers and
interpreters, as well as compiler generators. It covers the building of translators both
from scratch and using compiler generators. In the process, the course also identifies and
explores the main issues of the design of translators.

As is the case in many computer science courses with a significant theoretical component,
visualization tools can improve the quality of lectures and serve as animated lecture
notes. The most useful kind of algorithm animations are those that show in a
synchronized way both an operational view and a conceptual view of the algorithm steps.

The construction of a compiler/interpreter is a necessary component of this course, so
students can obtain the necessary skills. Compiler programming projects, however, are
often problematic for the following reasons:

• The size of a compiler implementation is usually much larger than that of the projects
students have undertaken in earlier courses.

• Most compiler generators are tabular, which makes the resulting compiler more
difficult to debug.

The severity of these problems can be reduced by using declarative scanners and parser
generators that produce recursive-descent parsers.

CC2001 Computer Science volume – 217 –
Final Report (December 15, 2001)

CS250W. Human-Computer Interaction
Presents a comprehensive introduction to the principles and techniques of human-
computer interaction.

Prerequisites: introduction to computer science (any implementation of CS103 or
CS112), discrete structures (CS106 or CS115)

Syllabus:
• Foundations of human-computer interaction: Motivation; contexts for HCI; human-

centered development and evaluation; human performance models; human
performance models; accommodating human diversity; principles of good design and
good designers; engineering tradeoffs; introduction to usability testing

• Human-centered software evaluation: Setting goals for evaluation; evaluation without
users; evaluation with users

• Human-centered software development: Approaches, characteristics, and overview of
process; functionality and usability; specifying interaction and presentation;
prototyping techniques and tools

• Graphical user-interface design: Choosing interaction styles and interaction
techniques; HCI aspects of common widgets; HCI aspects of screen design; handling
human failure; beyond simple screen design; multi-modal interaction; 3D interaction
and virtual reality

• Graphical user-interface programming: Dialogue independence and levels of analysis;
widget classes; event management and user interaction; geometry management; GUI
builders and UI programming environments; cross-platform design

• HCI aspects of multimedia systems: Categorization and architectures of information;
information retrieval and human performance; HCI design of multimedia information
systems; speech recognition and natural language processing; information appliances
and mobile computing

• HCI aspects of collaboration and communication: Groupware to support specialized
tasks; asynchronous group communication; synchronous group communication; online
communities; software characters and intelligent agents

Units covered:
PF5 Event-driven programming 2 core hours (of 4)
HC1 Foundations of human-computer interaction 6 core hours
HC2 Building a simple graphical user interface 2 core hours
HC3 Human-centered software evaluation 5 hours
HC4 Human-centered software development 5 hours
HC5 Graphical user-interface design 6 hours
HC6 Graphical user-interface programming 3 hours
HC7 HCI aspects of multimedia systems 5 hours
HC8 HCI aspects of collaboration and communication 3 hours
PL6 Object-oriented programming 2 core hours (of 10)

Elective topics 1 hour

CC2001 Computer Science volume – 218 –
Final Report (December 15, 2001)

CS255{S,W}. Computer Graphics
Offers an introduction to computer graphics, which has become an increasingly important
area within computer science. Computer graphics, particularly in association with the
multimedia aspects of the World-Wide Web, have opened up exciting new possibilities
for the design of human-computer interfaces. The purpose of this course is to investigate
the principles, techniques, and tools that have enabled these advances.

Prerequisites: introduction to computer science (any implementation of CS103 or
CS112), discrete structures (CS106 or CS115), linear algebra

Syllabus:
• Graphic systems: Raster and vector graphics systems; video display devices; physical

and logical input devices; issues facing the developer of graphical systems
• Fundamental techniques in graphics: Hierarchy of graphics software; using a graphics

API; simple color models; homogeneous coordinates; affine transformations; viewing
transformation; clipping

• Graphical algorithms: Line generation algorithms; structure and use of fonts;
parametric polynomial curves and surfaces; polygonal representation of 3D objects;
parametric polynomial curves and surfaces; introduction to ray tracing; image
synthesis, sampling techniques, and anti-aliasing; image enhancement

• Principles of human-computer interaction: Human-centered software development and
evaluation

• Graphical user-interface design: Choosing interaction styles and interaction
techniques; HCI aspects of interface design; dynamics of color; structuring a view for
effective understanding

• Graphical user-interface programming: Graphical widgets; event management and user
interaction; GUI builders and programming environments

• Computer animation: Key-frame animation; camera animation; scripting system;
animation of articulated structures; motion capture; procedural animation; deformation

• Multimedia techniques: Sound, video, and graphics; design of multimedia systems;
tools for multimedia development; virtual reality

Units covered:
AL10 Geometric algorithms 2 hours
HC2 Building a simple graphical user interface 2 core hours
HC3 Human-centered software evaluation 2 hours
HC4 Human-centered software development 2 hours
HC5 Graphical user-interface design 5 hours
HC6 Graphical user-interface programming 5 hours
GV1 Fundamental techniques in graphics 2 core hours
GV2 Graphic systems 1 core hour
GV3 Graphic communication 2 hours
GV4 Geometric modeling 3 hours
GV5 Basic rendering 3 hours
GV8 Computer animation 2 hours
GV10 Virtual reality 2 hours
IM13 Multimedia information and systems 4 hours
SE2 Using APIs 2 core hours (of 5)

Elective topics 1 hour

CC2001 Computer Science volume – 219 –
Final Report (December 15, 2001)

Notes:
Computer graphics is extremely exciting to students and can serve as an excellent
motivator for students, particularly to the extent that the course structure offers students
the opportunity to create graphical systems. Although implementation must be a central
component of this course, it is equally important to emphasize the mathematical
underpinnings of the area, thereby reinforcing the relationship between theory and
practice.

Software tools play a particularly critical role in this course. While it is useful for
students to learn basic principles at an abstract level, it is also essential for them to have
exposure to sophisticated graphical libraries, which will vastly extend their ability to
construct interesting applications. In addition to programmer-oriented graphical APIs, it
may make sense to include other packages—multimedia tools, modeling languages,
virtual reality—in this course as well.

Students who complete this course should be able to perform the following tasks:

• Offer a meaningful critique of graphical and multimedia interfaces that incorporates an
understanding of the principles of HCI design.

• Apply the principles that underpin the design of graphics and multimedia systems.
• Describe the range of tools that can be used to support the development of graphical

and multimedia systems.
• Use existing graphics and multimedia packages to develop appropriate graphical

applications.

CC2001 Computer Science volume – 220 –
Final Report (December 15, 2001)

CS260{S,T}. Artificial Intelligence
Introduces students to the fundamental concepts and techniques of artificial intelligence
(AI).

Prerequisites: introduction to computer science (any implementation of CS103 or
CS112), discrete structures (CS106 or CS115)

Syllabus:
• Fundamental issues in intelligent systems: History of artificial intelligence;

philosophical questions; fundamental definitions; philosophical questions; modeling
the world; the role of heuristics

• Search and constraint satisfaction: Problem spaces; brute-force search; best-first
search; two-player games; constraint satisfaction

• Knowledge representation and reasoning: Review of propositional and predicate logic;
resolution and theorem proving; nonmonotonic inference; probabilistic reasoning;
Bayes theorem

• Advanced search: Genetic algorithms; simulated annealing; local search
• Advanced knowledge representation and reasoning: Structured representation;

nonmonotonic reasoning; reasoning on action and change; temporal and spatial
reasoning; uncertainty; knowledge representation for diagnosis, qualitative
representation

• Agents: Definition of agents; successful applications and state-of-the-art agent-based
systems; software agents, personal assistants, and information access; multi-agent
systems

• Machine learning and neural networks: Definition and examples of machine learning;
supervised learning; unsupervised learning; reinforcement learning; introduction to
neural networks

• AI planning systems: Definition and examples of planning systems; planning as
search; operator-based planning; propositional planning

Units covered:
IS1 Fundamental issues in intelligent systems 1 core hour
IS2 Search and constraint satisfaction 5 core hours
IS3 Knowledge representation and reasoning 4 core hours
IS4 Advanced search 6 hours
IS5 Advanced knowledge representation and reasoning 5 hours
IS6 Agents 3 hours
IS8 Machine learning and neural networks 5 hours
IS9 AI planning systems 5 hours

Elective topics 6 hours

CC2001 Computer Science volume – 221 –
Final Report (December 15, 2001)

CS261W. AI and Information
Introduces the basics of artificial intelligence and information management.

Prerequisites: introduction to computer science (any implementation of CS103 or
CS112), discrete structures (CS106 or CS115)

Syllabus:
• Fundamental issues in intelligent systems: History of artificial intelligence;

philosophical questions; fundamental definitions; philosophical questions; modeling
the world; the role of heuristics

• Search and constraint satisfaction: Problem spaces; brute-force search; best-first
search; two-player games; constraint satisfaction

• Knowledge representation and reasoning: Review of propositional and predicate logic;
resolution and theorem proving; nonmonotonic inference; probabilistic reasoning;
bayes theorem

• Advanced search: Genetic algorithms; simulated annealing; local search
• Machine learning and neural networks: Definition and examples of machine learning;

supervised learning; learning decision trees; learning neural networks; learning belief
networks; the nearest neighbor algorithm; learning theory; the problem of overfitting;
unsupervised learning; reinforcement learning

• Information models and systems: History and motivation for information systems;
information storage and retrieval; information management applications; information
capture and representation; analysis and indexing; search, retrieval, linking,
navigation; information privacy, integrity, security, and preservation; scalability,
efficiency, and effectiveness

• Database systems: History and motivation for database systems; components of
database systems; DBMS functions; database architecture and data independence

• Data modeling: Data modeling; conceptual models; object-oriented model; relational
data model

• Relational databases: Mapping conceptual schema to a relational schema; entity and
referential integrity; relational algebra and relational calculus

• Database query languages: Overview of database languages; SQL; query optimization;
QBE and 4th-generation environments; embedding non-procedural queries in a
procedural language; introduction to Object Query Language

Units covered:
IS1 Fundamental issues in intelligent systems 1 core hour
IS2 Search and constraint satisfaction 5 core hours
IS3 Knowledge representation and reasoning 4 core hours
IS4 Advanced search 3 hours
IS8 Machine learning and neural networks 3 hours
IM1 Information models and systems 3 core hours
IM2 Database systems 3 core hours
IM3 Data modeling 4 core hours
IM4 Relational databases 3 hours
IM5 Database query languages 3 hours
SP6 Intellectual property 1 core hour (of 3)

Elective topics 7 hours

CC2001 Computer Science volume – 222 –
Final Report (December 15, 2001)

CS262C. Information and Knowledge Management
Uses the idea of information as a unifying theme to investigate a range of issues in
computer science, including database systems, artificial intelligence, human-computer
interaction, multimedia system, and data communication.

Prerequisites: introduction to computer science (any implementation of CS103 or
CS112), discrete structures (CS106 or CS115)

Syllabus:
• Information models and systems: History and motivation for information systems;

information storage and retrieval; information management applications; information
capture and representation; analysis and indexing; search, retrieval, linking,
navigation; information privacy, integrity, security, and preservation; scalability,
efficiency, and effectiveness

• Database systems: History and motivation for database systems; components of
database systems; DBMS functions; database architecture and data independence; use
of a database query language

• Data modeling: Data modeling; conceptual models; object-oriented model; relational
data model

• Relational databases: Mapping conceptual schema to a relational schema; entity and
referential integrity; relational algebra and relational calculus

• Search and constraint satisfaction: Problem spaces; brute-force search; best-first
search; two-player games; constraint satisfaction

• Knowledge representation and reasoning: Review of propositional and predicate logic;
resolution and theorem proving; nonmonotonic inference; probabilistic reasoning;
bayes theorem

• Foundations of human-computer interaction: Motivation; contexts for HCI; human-
centered development and evaluation; human performance models; human
performance models; accommodating human diversity; principles of good design and
good designers; engineering tradeoffs; introduction to usability testing

• Fundamental issues in intelligent systems: History of artificial intelligence;
philosophical questions; fundamental definitions; philosophical questions; modeling
the world; the role of heuristics

• Cryptographic algorithms: Historical overview of cryptography; private-key
cryptography and the key-exchange problem; public-key cryptography; digital
signatures; security protocols

• Introduction to compression and decompression: Encoding and decoding algorithms;
lossless and lossy compression

• Multimedia information and systems
• Intellectual property: Foundations of intellectual property; copyrights, patents, and

trade secrets; software piracy; software patents; transnational issues concerning
intellectual property

• Privacy and civil liberties: Ethical and legal basis for privacy protection; privacy
implications of massive database systems; technological strategies for privacy
protection; freedom of expression in cyberspace; international and intercultural
implications

CC2001 Computer Science volume – 223 –
Final Report (December 15, 2001)

Units covered:
AL9 Cryptographic algorithms 3 hours
NC7 Compression and decompression 2 hours
HC1 Foundations of human-computer interaction 4 core hours (of 6)
IS1 Fundamental issues in intelligent systems 1 core hour
IS2 Search and constraint satisfaction 5 core hours
IS3 Knowledge representation and reasoning 4 core hours
IM1 Information models and systems 3 core hours
IM2 Database systems 3 core hours
IM3 Data modeling 4 core hours
IM4 Relational databases 4 hours
IM13 Multimedia information and systems 2 hours
SP6 Intellectual property 3 core hours
SP7 Privacy and civil liberties 2 core hours

Notes:
Given that it addresses a mix of topics from such areas as databases, artificial
intelligence, and human-computer interaction, it is unlikely that courses like CS262C
appear in existing curricula. We believe, however, that courses of this sort, which take a
unifying theme and use that to provide structure to an otherwise diverse set of topics,
provide a useful way to develop a “crosscutting core” that focuses on broad themes rather
than specific artifacts. In this case, the broad theme is that of the management,
representation, and manipulation of information. It addresses, for example, the entire
area of storing, retrieving, encoding, and managing information, whether for database
use, intelligent systems use, telecommunications, or graphics. It also addresses the social
and ethical issues related to information management, such as the ownership of
intellectual property and individual privacy rights.

More than the other courses in the compressed approach, CS262C has room for a range of
interesting topics outside the core. This implementation, for example, includes such
topics as cryptography, compression, and multimedia, all of which fit the theme of
information management. Depending on the particular strengths of the faculty and the
interests of the students, other topics could be incorporated as well.

CC2001 Computer Science volume – 224 –
Final Report (December 15, 2001)

CS270T. Databases
Introduces the concepts and techniques of database systems.

Prerequisites: introduction to computer science (any implementation of CS103 or
CS112), discrete structures (CS106 or CS115)

Syllabus:
• Information models and systems: History and motivation for information systems;

information storage and retrieval; information management applications; information
capture and representation; analysis and indexing; search, retrieval, linking,
navigation; information privacy, integrity, security, and preservation; scalability,
efficiency, and effectiveness

• Database systems: History and motivation for database systems; components of
database systems; DBMS functions; database architecture and data independence

• Data modeling: Data modeling; conceptual models; object-oriented model; relational
data model

• Relational databases: Mapping conceptual schema to a relational schema; entity and
referential integrity; relational algebra and relational calculus

• Database query languages: Overview of database languages; SQL; query optimization;
4th-generation environments; embedding non-procedural queries in a procedural
language; introduction to Object Query Language

• Relational database design: Database design; functional dependency; normal forms;
multivalued dependency; join dependency; representation theory

• Transaction processing: Transactions; failure and recovery; concurrency control
• Distributed databases: Distributed data storage; distributed query processing;

distributed transaction model; concurrency control; homogeneous and heterogeneous
solutions; client-server

• Physical database design: Storage and file structure; indexed files; hashed files;
signature files; b-trees; files with dense index; files with variable length records;
database efficiency and tuning

Units covered:
HC1 Foundations of human-computer interaction 2 core hours (of 6)
IM1 Information models and systems 3 core hours
IM2 Database systems 3 core hours
IM3 Data modeling 4 core hours
IM4 Relational databases 5 hours
IM5 Database query languages 4 hours
IM6 Relational database design 4 hours
IM7 Transaction processing 3 hours
IM8 Distributed databases 3 hours
IM9 Physical database design 3 hours
SP6 Intellectual property 3 core hours
SP7 Privacy and civil liberties 2 core hours

Elective topics 1 hour

CC2001 Computer Science volume – 225 –
Final Report (December 15, 2001)

CS271S. Information Management
The task of organizing large volumes of information of potentially different kinds is a
daunting one. Typically, resolution of the associated problems depends on the use of an
underlying database technology, often involving networking. This course addresses both
the technical and social issues involved.

Prerequisites: introduction to computer science (any implementation of CS103 or
CS112), discrete structures (CS106 or CS115), CS120

Syllabus:
• Overview of information management: History and motivation for information

systems; common problems of information management; the business perspective
• Social issues in information technology: Intellectual property; computer crime;

privacy; security and civil liberties; the need for a legal and ethical framework;
guidelines for computer use

• Introduction to database systems: History and motivation for database systems;
components of database systems; DBMS functions; database architecture and data
independence; use of a database query language; the relational model

• Building databases: Underlying methodology; database query languages; particular
database issues

• Information systems to serve particular purposes: Intranets and extranets; the
information retrieval problem

• Design and development of information systems: Database design; relational database
design; life-cycle issues

• Security and control issues: Overview of problems and standard solutions; database
integrity; transactions; the role of encryption

• Evaluation of information systems

Units covered:
IM1 Information models and systems 2 core hours (of 3)
IM2 Database systems 2 core hours (of 3)
IM3 Data modeling 4 core hours
IM4 Relational databases 5 hours
IM5 Database query languages 5 hours
IM6 Relational database design 2 hours
IM7 Transaction processing 3 hours
IM11 Information storage and retrieval 2 hours
IM13 Multimedia information and systems 2 hours
IM14 Digital libraries 2 hours
SP2 Social context of computing 1 core hour (of 3)
SP3 Methods and tools of analysis 2 core hours
SP4 Professional and ethical responsibilities 2 core hours (of 3)
SP5 Risks and liabilities of computer-based systems 1 core hour (of 2)
SP6 Intellectual property 2 core hours (of 3)
SP7 Privacy and civil liberties 2 core hours

Elective topics 1 hour

Notes:
The material for this class builds on the work of earlier classes, in particular CS140S.
The focus of the course is on the decisions that need to be made about how best to

CC2001 Computer Science volume – 226 –
Final Report (December 15, 2001)

manage complex information and how to store it in a manner that ensures ease of
retrieval, with a simple and natural conceptual framework.

With the development of any information system, there will be imperatives of various
kinds. One important one is the business or commercial perspective. Accordingly, this
course can be used as a vehicle for introducing students to the world of business and
commerce and to the imperatives—including the ethical ones—that operate in this
environment. But ultimately there will be an underlying life-cycle model with a
requirements phase, a specification phase, a design phase, a development phase, as well
as validation and verification phases. Ideas from human computer interaction and
networking will also be relevant. Students need to be exposed to these ideas to convey
the notion of a disciplined and considered approach to the development of these systems.

At some level, all information systems depend on database technology. Many other
issues, however, also come into play including human factors and the dynamics of the
World-Wide Web. Examples of good practice can be made available by exposing
students to suitable web sites and to suitable digital libraries.

Students typically respond positively and responsibly to instances of computer disasters
and malpractice. Such illustrations and case studies can be used as a vehicle to engender
an appreciation of the importance of a study of social and ethical issues. Indeed, it is vital
to have an approach which ensures that students understand the importance and relevance
of this topic.

In the wider environment of the university, ideas from this course can be reinforced by
appealing to other sets of rules to which students must adhere. These systems of rules
provide living examples of the discipline that must be practiced within laboratories and
the management practices that should be associated with the running of computer systems
by support staff.

Students who complete this course should be able to perform the following tasks:

• Describe the different business and other imperatives (including legal and ethical) that
influence the development of information systems, and this includes the requirements
of remote access.

• Apply the basic principles of database technology.
• Explain the potential of distributed information management systems and the problems

such systems entail.
• Identify common security and control mechanisms associated with information

management and be able to apply these mechanisms effectively.
• Justify the need for codes of conduct and a legal framework for computer use.
• Give examples of several computing applications that raise sensitive legal and ethical

concerns.

CC2001 Computer Science volume – 227 –
Final Report (December 15, 2001)

CS280T. Social and Professional Issues
Introduces students to the social and professional issues that arise in the context of
computing.

Prerequisites: introduction to computer science (any implementation of CS103 or
CS112)

Syllabus:
• History of computing: Prehistory—the world before 1946; history of computer

hardware, software, networking; pioneers of computing
• Social context of computing: Introduction to the social implications of computing;

social implications of networked communication; growth of, control of, and access to
the Internet; gender-related issues; international issues

• Methods and tools of analysis: Making and evaluating ethical arguments; identifying
and evaluating ethical choices; understanding the social context of design; identifying
assumptions and values

• Professional and ethical responsibilities: Community values and the laws by which we
live; the nature of professionalism; various forms of professional credentialing and the
advantages and disadvantages; the role of the professional in public policy;
maintaining awareness of consequences; ethical dissent and whistle-blowing; codes of
ethics, conduct, and practice; dealing with harassment and discrimination; “Acceptable
use” policies for computing in the workplace

• Risks and liabilities of computer-based systems: Historical examples of software risks;
implications of software complexity; risk assessment and management

• Intellectual property: Foundations of intellectual property; copyrights, patents, and
trade secrets; software piracy; software patents; transnational issues concerning
intellectual property

• Privacy and civil liberties: Ethical and legal basis for privacy protection; privacy
implications of massive database systems; technological strategies for privacy
protection; freedom of expression in cyberspace; international and intercultural
implications

• Computer crime: History and examples of computer crime; “Cracking” and its effects;
viruses, worms, and Trojan horses; crime prevention strategies

• Economic issues in computing: Monopolies and their economic implications; effect of
skilled labor supply and demand on the quality of computing products; pricing
strategies in the computing domain; differences in access to computing resources and
the possible effects thereof

• Philosophical frameworks: Philosophical frameworks, particularly utilitarianism and
deontological theories; problems of ethical relativism; scientific ethics in historical
perspective; differences in scientific and philosophical approaches

CC2001 Computer Science volume – 228 –
Final Report (December 15, 2001)

Units covered:
SP1 History of computing 1 core hour
SP2 Social context of computing 3 core hours
SP3 Methods and tools of analysis 2 core hours
SP4 Professional and ethical responsibilities 3 core hours
SP5 Risks and liabilities of computer-based systems 2 core hours
SP6 Intellectual property 3 core hours
SP7 Privacy and civil liberties 2 core hours
SP8 Computer crime 3 hours
SP9 Economic issues in computing 2 hours
SP10 Philosophical frameworks 2 hours

Elective topics 17 hours

Notes:
A computer science program can incorporate social and professional issues into the
curriculum in many different ways. In many ways, the ideal approach is to include
discussion of this material in a wide variety of courses so that students have the chance to
consider these issues in the context of each technical area. Unfortunately, this strategy
sometimes fails to have the desired effect. Unless faculty members commit to give this
material serious consideration, social and professional issues are often given low priority
in the context of other courses, to the sometimes wind up being left out altogether in the
press to cover more traditional material.

To ensure that students have a real opportunity to study this material, many departments
choose to devote an entire course to social and professional issues. Programs that adopt
this strategy must make sure that they make the material relevant to students by
discussing these issues in the context of concrete examples that arise in computer science.

CC2001 Computer Science volume – 229 –
Final Report (December 15, 2001)

CS290T. Software Development
Provides an intensive, implementation-oriented introduction to the software-development
techniques used to create medium-scale interactive applications, focusing on the use of
large object-oriented libraries to create well-designed graphical user interfaces. Topics
include event-driven programming, computer graphics, human-computer interaction
(HCI), and graphical user interfaces.

Prerequisites: introduction to computer science (any implementation of CS103 or
CS112), discrete structures (CS106 or CS115)

Syllabus:
• Event-driven programming: Event-handling methods; event propagation; managing

concurrency in event handling; exception handling
• Using application programmer interfaces (APIs): API programming; class browsers

and related tools; programming by example; debugging in the api environment;
component-based computing

• Computer graphics: Raster and vector graphics systems; video display devices;
physical and logical input devices; issues facing the developer of graphical systems

• Introduction to human-computer interaction (HCI): Motivation and context; human-
centered development and evaluation; human performance models; accommodating
human diversity; principles of good design and good designers; engineering tradeoffs;
introduction to usability testing

• Human-centered software evaluation: Setting goals for evaluation; evaluation
strategies

• Human-centered software development: Approaches, characteristics, and overview of
process; prototyping techniques and tools

• Graphical user interfaces (GUIs): Graphical APIs; choosing interaction styles and
interaction techniques; HCI aspects of graphical design (layout, color, fonts, labeling);
geometry management; programming environments for creating GUIs

• Software development techniques: Object-oriented analysis and design; component-
level design; software requirements and specifications; prototyping; characteristics of
maintainable software; software reuse; team management; project scheduling

Units covered:
PF5 Event-driven programming 4 core hours
HC1 Foundations of human-computer interaction 6 core hours
HC2 Building a simple graphical user interface 2 core hours
HC3 Human-centered software evaluation 1 hour
HC4 Human-centered software development 1 hour
HC5 Graphical user-interface design 3 hours
HC6 Graphical user-interface programming 3 hours
GV1 Fundamental techniques in graphics 2 core hours
GV2 Graphic systems 1 core hour
SE1 Software design 2 core hours (of 8)
SE2 Using APIs 3 core hours (of 5)
SE3 Software tools and environments 2 core hours (of 3)
SE5 Software requirements and specifications 2 core hours (of 4)
SE6 Software validation 1 core hour (of 3)
SE7 Software evolution 2 core hours (of 3)
SE8 Software project management 2 core hours (of 3)

Elective topics 3 hours

CC2001 Computer Science volume – 230 –
Final Report (December 15, 2001)

CS291S. Software Development and Systems Programming
Extends the ides of software design and development from the introductory programming
sequence to encompass the problems encountered in large-scale programs. Topics
include software engineering techniques for programming in the large, advanced issues in
object-oriented prorgamming, design patterns, client-server computing, and principles of
interface design.

Prerequisites: introduction to computer science (any implementation of CS103 or
CS112), CS210S

Syllabus:
• Large-system engineering: Separate compilation; design issues; verification and

validation; integrating components; documentation
• Advanced issues in object-oriented programming: Modularity; storage management;

parallelism; event-centered programming; common design patterns; software reuse
• Client-server computing: Software support needed for client and server

implementation; varieties of server structures; strategies for client-server design; tools
for client-server system development; middleware

• The web as an example of client-server computing: Web technologies; characteristics
of web servers; role of client computers; the applet concept; web protocols; support
tools for web site creation and web management; publishing information and
applications; performance issues

• Introduction to human-computer interaction (HCI): Human-centered software design
and evaluation; relevant psychological and cognitive background theory; user
modeling; teachability and learnability concerns

• Principles of HCI design: Building interactive systems; guidelines for interface design;
illustrations of good and bad examples of interface design; tools and classes that
support interface design; metrics

• Graphical user-interface design: Choosing interaction styles and interaction
techniques; HCI aspects of common widgets; HCI aspects of screen design; special
problems associated with color, sound, video, and multimedia

Units covered:
PF3 Fundamental data structures 6 core hours (of 14)
PF5 Event-driven programming 4 core hours
NC4 The web as an example of client-server computing 2 core hours (of 3)
HC1 Foundations of human-computer interaction 3 core hours (of 6)
HC3 Human-centered software evaluation 2 hours
HC4 Human-centered software development 2 hours
HC5 Graphical user-interface design 2 hours
HC6 Graphical user-interface programming 2 hours
PL6 Object-oriented programming 4 core hours (of 10)
SE1 Software design 2 core hours (of 8)
SP5 Risks and liabilities of computer-based systems 1 core hour (of 2)
SE2 Using APIs 3 core hours (of 5)
SE4 Software processes 1 core hour (of 2)
SE5 Software requirements and specifications 2 core hours (of 4)
SE6 Software validation 2 core hours (of 3)
SE7 Software evolution 1 core hour (of 3)
SE8 Software project management 1 core hour (of 3)

CC2001 Computer Science volume – 231 –
Final Report (December 15, 2001)

Notes:
An important stage in the education of a good software developer consists of making the
transition from programming-in-the-small to programming-in-the-large. The purpose of
this course is to bridge that gap by enabling students to develop large programs in well
defined stages. In the process, this course explores the requirements at each stage of the
development along with various issues of quality control. In the practical component of
the course, students learn to appreciate the range of facilities that a typical object-oriented
language offers and to apply sound approaches to software design in the large-system
environment.

Moving from programming-in-the-small to programming-in-the-large, however, is not
straightforward. Students need to be provided with a range of reasonable illustrations and
examples for them to attempt. In the syllabus presented here, those illustrations are
drawn from net-centric computing and user-interface design. Other possibilities,
however, exist as well. For example, courses designed to introduce programming-in-the-
large might be based on e-commerce, groupware, or other kinds of sophisticated
application servers. In every case, it is important to emphasize the importance of
complexity management by showing how large tasks can be broken down into smaller
tasks that can often be addressed through the selection of appropriate algorithms. In this
way, students see the relevance of earlier course work, including the study of algorithms
and complexity.

With the transition to larger systems, the quality of the user interface becomes
increasingly vital, because the interface has a significant bearing on the usability of
software. This course therefore includes a study of the basic principles of human-
computer interaction (HCI). While human-computer interaction can be seen as a subject
in its own right or interpreted as an aspect of software engineering, there is merit in
taking the former view, since the basic ideas will be relevant in many contexts. An
understanding of these same principles provides essential insight into the design and
development of other software systems including web sites, multimedia systems, and so
forth.

A useful starting point in the study of HCI consists of having students evaluate interfaces
of various kinds, making sure that they are exposed to both good and bad practice.
Ultimately, however, the students must demonstrate their understanding of the principles
by designing an interface of some sophistication. An important aspect of the practical
component of HCI lies in exposing students to state-of-the-art software that supports such
development, including special-purpose tools and class libraries to support interface
development. The laboratory aspect of this course can also benefit from the use of design
languages and associated tools.

Students who complete this course should be able to perform the following tasks:

• Apply guidelines for the design of application software and user interfaces.
• Apply the principles of program design (involving the design and development of a

range of objects) to the construction of a significant piece of software, justifying the
design decisions made at each stage and addressing the relevant quality issues.

• Identify the basic techniques that result in efficient and effective ways of building large
software systems and be able to use those techniques in practice.

• Discuss the power and potential of net-centric computing, including both the technical
issues involved and the range of software needed to exploit this technology.

• Apply the principles associated with the design and development to a range of web
applications.

CC2001 Computer Science volume – 232 –
Final Report (December 15, 2001)

• Outline the theories that underpin the design and development of human-computer
interfaces.

• Assess in a systematic fashion the quality of the interfaces in a range of software
systems.

CC2001 Computer Science volume – 233 –
Final Report (December 15, 2001)

CS292{C,W}. Software Development and Professional Practice
Combines a range of topics integral to the design, implementation, and testing of a
medium-scale software system with the practical experience of implementing such a
project as a member of a programmer team. In addition to material on software
engineering, this course treats also includes material on professionalism and ethical
responsibilities in software development and human-computer interaction.

Prerequisites: CS226C and CS262C, or CS221W and CS250W

Syllabus:
• Event-driven programming: Event-handling methods; event propagation; exception

handling
• Foundations of human-computer interaction: Human-centered development and

evaluation; human performance models; accommodating human diversity; principles
of good design and good designers; engineering tradeoffs; introduction to usability
testing

• Using APIs: API programming; class browsers and related tools; programming by
example; debugging in the API environment; introduction to component-based
computing

• Building a simple graphical user interface: Principles of graphical user interfaces; GUI
toolkits

• Graphic systems: Raster and vector graphics systems; video display devices; physical
and logical input devices; issues facing the developer of graphical systems

• Software processes: Software life-cycle and process models; process assessment
models; software process metrics

• Software requirements and specifications: Requirements elicitation; requirements
analysis modeling techniques; functional and nonfunctional requirements; prototyping;
basic concepts of formal specification techniques

• Software design: Fundamental design concepts and principles; design patterns;
software architecture; structured design; object-oriented analysis and design;
component-level design; design for reuse

• Software validation: Validation planning; testing fundamentals, including test plan
creation and test case generation; black-box and white-box testing techniques; unit,
integration, validation, and system testing; object-oriented testing; inspections

• Software evolution: Software maintenance; characteristics of maintainable software;
reengineering; legacy systems; software reuse

• Software project management: Team management; project scheduling; software
measurement and estimation techniques; risk analysis; software quality assurance;
software configuration management; project management tools

• Social context of computing: Introduction to the social implications of computing;
social implications of networked communication; growth of, control of, and access to
the Internet; gender-related issues; international issues

• Methods and tools of analysis: Making and evaluating ethical arguments; identifying
and evaluating ethical choices; understanding the social context of design; identifying
assumptions and values

• Professional and ethical responsibilities: Community values and the laws by which we
live; the nature of professionalism; various forms of professional credentialing and the
advantages and disadvantages; the role of the professional in public policy;
maintaining awareness of consequences; ethical dissent and whistle-blowing; codes of

CC2001 Computer Science volume – 234 –
Final Report (December 15, 2001)

ethics, conduct, and practice; dealing with harassment and discrimination; “Acceptable
use” policies for computing in the workplace

• Risks and liabilities of computer-based systems: Historical examples of software risks;
implications of software complexity; risk assessment and management

Units covered:
PF5 Event-driven programming 2 core hours (of 4)
HC1 Foundations of human-computer interaction 2 core hours (of 6)
HC2 Building a simple graphical user interface 2 core hours
GV1 Fundamental techniques in graphics 2 core hours
GV2 Graphic systems 1 core hour
SP2 Social context of computing 3 core hours
SP3 Methods and tools of analysis 2 core hours
SP4 Professional and ethical responsibilities 3 core hours
SP5 Risks and liabilities of computer-based systems 2 core hours
SE1 Software design 4 core hours (of 8)
SE2 Using APIs 3 core hours (of 5)
SE3 Software tools and environments 1 core hour (of 3)
SE4 Software processes 2 core hours
SE5 Software requirements and specifications 3 core hours (of 4)
SE6 Software validation 2 core hours (of 3)
SE7 Software evolution 3 core hours
SE8 Software project management 3 core hours

CC2001 Computer Science volume – 235 –
Final Report (December 15, 2001)

B.4 Advanced courses
The CC2001 Task Force has decided not to include in the printed report full descriptions
of the advanced courses unless those courses are part of one of the curricular tracks
described in Chapter 8. Instead, we plan to create web pages for these courses, which
will be accessible from the CC2001 web page. A list of the advanced courses we propose
appears in Figure B-4.

Figure B-4. Advanced courses by area

Discrete Structures (DS)
CS301. Combinatorics
CS302. Probability and Statistics
CS303. Coding and Information Theory

Computational Science (CN)
CS304. Computational Science
CS305. Numerical Analysis
CS306. Operations Research
CS307. Simulation and Modeling
CS308. Scientific Computing
CS309. Computational Biology

Algorithms and Complexity (AL)
CS310. Advanced Algorithmic Analysis
CS311. Automata and Language Theory
CS312. Cryptography
CS313. Geometric Algorithms
CS314. Parallel Algorithms

Architecture and Organization (AR)
CS320. Advanced Computer Architecture
CS321. Parallel Architectures
CS322. System on a Chip
CS323. VLSI Development
CS324. Device Development

Operating Systems (OS)
CS325. Advanced Operating Systems
CS326. Concurrent and Distributed Systems
CS327. Dependable Computing
CS328. Fault Tolerance
CS329. Real-Time Systems

Net-Centric Computing (NC)
CS330. Advanced Computer Networks
CS331. Distributed Systems
CS332. Wireless and Mobile Computing
CS333. Cluster Computing
CS334. Data Compression
CS335. Network Management
CS336. Network Security
CS337. Enterprise Networking
CS338. Programming for the World-Wide Web

Programming Languages (PL)
CS340. Compiler Construction
CS341. Programming Language Design
CS342. Programming Language Semantics
CS343. Programming Paradigms
CS344. Functional Programming
CS345. Logic Programming
CS346. Scripting Languages

Human-Computer Interaction (HC)
CS350. Human-Centered Design and Evaluation
CS351. Graphical User Interfaces
CS352. Multimedia Systems Development
CS353. Interactive Systems Development
CS354. Computer-Supported Cooperative Work

Graphics and Visual Computing (GV)
CS355. Advanced Computer Graphics
CS356. Computer Animation
CS357. Visualization
CS358. Virtual Reality
CS359. Genetic Algorithms

Intelligent Systems (IS)
CS360. Intelligent Systems
CS361. Automated Reasoning
CS362. Knowledge-Based Systems
CS363. Machine Learning
CS364. Planning Systems
CS365. Natural Language Processing
CS366. Agents
CS367. Robotics
CS368. Symbolic Computation
CS369. Genetic Algorithms

Information Management (IM)
CS370. Advanced Database Systems
CS371. Database Design
CS372. Transaction Processing
CS373. Distributed and Object Databases
CS374. Data Mining
CS375. Data Warehousing
CS376. Multimedia Information Systems
CS377. Digital Libraries

Social and Professional Issues (SP)
CS380. Professional Practice
CS381. Social Context of Computing
CS382. Computers and Ethics
CS383. Computing Economics
CS384. Computer Law
CS385. Intellectual Property
CS386. Privacy and Civil Liberties

Software Engineering (SE)
CS390. Advanced Software Development
CS391. Software Engineering
CS392. Software Design
CS393. Software Engineering and Formal Specification
CS394. Empirical Software Engineering
CS395. Software Process Improvement
CS396. Component-Based Computing
CS397. Programming Environments
CS398. Safety-Critical Systems

CC2001 Computer Science volume – 236 –
Final Report (December 15, 2001)

B.5 Project courses
As we discuss in section 9.3, we believe that it is critical for all undergraduates to
complete a significant team project as part of their undergraduate program. In some
cases, this experience may be integrated into existing courses, such as those in software
engineering. In other cases, however, it is appropriate to offer standalone project courses
that allow students to integrate the many concepts and skills they have learned as
undergraduates in the context of a significant project.

The curriculum descriptions in this report refer to two different implementations of a
project course. The first is

CS490. Capstone Project

which provides a one-semester capstone experience. The second is the two-semester
sequence

CS491. Capstone Project I
CS492. Capstone Project II

which makes it possible for students to complete a much more ambitious project over the
course of a full year.

The design of these courses will vary greatly from institution to institution. In some
programs, the project course may include lectures, particularly if the earlier courses do
not cover the full set of required units in the core. In any event, we expect that any
project course will provide coverage of some of the material from the body of knowledge,
as illustrated in the following table:

HC1 Foundations of human-computer interaction 2 core hours (of 6)
HC5 Graphical user-interface design 2 hours
HC6 Graphical user-interface programming 2 hours
SE1 Software design 4 core hours (of 8)
SE2 Using APIs 3 core hours (of 5)
SE3 Software tools and environments 3 core hours
SE4 Software processes 2 core hours
SE5 Software requirements and specifications 2 core hours (of 4)
SE6 Software validation 3 core hours
SE7 Software evolution 2 core hours (of 3)
SE8 Software project management 3 core hours

Team management 2 hours
Communications skills 2 hours

Regardless of whether these topics are covered in lecture or are simply acquired in the
completion of the work, the focus of the course must remain on the project, which gives
students the chance to reinforce through practice the concepts they have learned earlier in
a more theoretical way.

