The Community for Technology Leaders
RSS Icon
Anchorage, AK, USA
June 23, 2008 to June 28, 2008
ISBN: 978-1-4244-2339-2
pp: 1-8
Rene Alquezar , Universitat Politécnica de Catalunya, Campus Nord, Edifici Omega, 08034 Barcelona, Spain
Nicolas Amezquita , Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
This paper presents an extension of a previously reported method for object tracking in video sequences [9] to handle object occlusion. The new tracking method is embedded in a system that integrates recognition and tracking in a probabilistic framework. Our system uses object recognition results provided by a neural net that are computed from colour features of image regions for each frame. The location of tracked objects is represented through probability images that are updated dynamically using both recognition and tracking results. From these probabilities and a simple prediction of the apparent motion of the object in the image, a binary decision is made for each pixel and object. The new features of the proposed tracking method include the automated detection of occlusion and the adaptation of the motion prediction to the cases of entering occlusion, full occlusion and exiting occlusion. Experimental results show the effectiveness of the method except when the target object is occluded by an object with a similar appearance.
Rene Alquezar, Nicolas Amezquita, "Dealing with occlusion in a probabilistic object tracking method", CVPRW, 2008, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2008, pp. 1-8, doi:10.1109/CVPRW.2008.4563060
6 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool