The Community for Technology Leaders
RSS Icon
Subscribe
Anchorage, AK, USA
June 23, 2008 to June 28, 2008
ISBN: 978-1-4244-2339-2
pp: 1-8
Joachim S. Stahl , Department of Computer Science and Engineering, University of South Carolina, Columbia, 29208, USA
Kenton Oliver , Department of Computer Science and Engineering, University of South Carolina, Columbia, 29208, USA
Song Wang , Department of Computer Science and Engineering, University of South Carolina, Columbia, 29208, USA
ABSTRACT
Edge grouping methods aim at detecting the complete boundaries of salient structures in noisy images. In this paper, we develop a new edge grouping method that exhibits several useful properties. First, it combines both boundary and region information by defining a unified grouping cost. The region information of the desirable structures is included as a binary feature map that is of the same size as the input image. Second, it finds the globally optimal solution of this grouping cost. We extend a prior graph-based edge grouping algorithm to achieve this goal. Third, it can detect both closed boundaries, where the structure of interest lies completely within the image perimeter, and open boundaries, where the structure of interest is cropped by the image perimeter. Given this capability for detecting both open and closed boundaries, the proposed method can be extended to segment an image into disjoint regions in a hierarchical way. Experimental results on real images are reported, with a comparison against a prior edge grouping method that can only detect closed boundaries.
CITATION
Joachim S. Stahl, Kenton Oliver, Song Wang, "Open boundary capable edge grouping with feature maps", CVPRW, 2008, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2008, pp. 1-8, doi:10.1109/CVPRW.2008.4562978
19 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool