The Community for Technology Leaders
RSS Icon
Subscribe
Anchorage, AK, USA
June 23, 2008 to June 28, 2008
ISBN: 978-1-4244-2339-2
pp: 1-8
Yogesh Rathi , Psychiatry Neuroimaging Lab, Harvard Medical School, Boston, MA, USA
Oleg Michailovich , University of Waterloo, Canada
Sylvain Bouix , Psychiatry Neuroimaging Lab, Harvard Medical School, Boston, MA, USA
M. E. Shenton , Psychiatry Neuroimaging Lab, Harvard Medical School, Boston, MA, USA
ABSTRACT
We propose a novel fast and analytical method to obtain the orientation distribution function (ODF) from diffusion weighted signals measured using the Q-ball imaging methodology. Past work has involved using the spherical harmonics or radial basis functions to represent the ODF. In this work, we propose to use the hyperspherical de la Vallee Poussin kernel to represent the measured Q-ball signal and derive its spherical radon transform to analytically compute the corresponding ODF. To minimize the number of coefficients used to represent the resulting ODF, we use the matching pursuit algorithm. In particular, we show how to extract principal diffusion directions that are separated by as small as 22.5 degrees in orientation. We show, with experiments, the robustness of the proposed method to signal noise and compare it with ODF computation using spherical harmonics on some synthetic and real data set. The proposed method is particularly useful in applications like tractography, segmentation or for better visualization of principal diffusion directions.
CITATION
Yogesh Rathi, Oleg Michailovich, Sylvain Bouix, M. E. Shenton, "Orientation distribution estimation for Q-ball imaging", CVPRW, 2008, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops 2008, pp. 1-8, doi:10.1109/CVPRW.2008.4562963
18 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool