IEEE Transactions on Knowledge and Data Engineering

IEEE Transactions on Knowledge and Data Engineering (TKDE) is an archival journal published monthly designed to inform researchers, developers, managers, strategic planners, users, and others interested in state-of-the-art and state-of-the-practice activities in the knowledge and data engineering area. Read the full scope of TKDE

Expand your horizons with Colloquium, a monthly survey of abstracts from all CS transactions! Replaces OnlinePlus in January 2017.

From the September 2018 issue

A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications

By HongYun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang

Featured Article Graph is an important data representation which appears in a wide diversity of real-world scenarios. Effective graph analytics provides users a deeper understanding of what is behind the data, and thus can benefit a lot of useful applications such as node classification, node recommendation, link prediction, etc. However, most graph analytics methods suffer the high computation and space cost. Graph embedding is an effective yet efficient way to solve the graph analytics problem. It converts the graph data into a low dimensional space in which the graph structural information and graph properties are maximumly preserved. In this survey, we conduct a comprehensive review of the literature in graph embedding. We first introduce the formal definition of graph embedding as well as the related concepts. After that, we propose two taxonomies of graph embedding which correspond to what challenges exist in different graph embedding problem settings and how the existing work addresses these challenges in their solutions. Finally, we summarize the applications that graph embedding enables and suggest four promising future research directions in terms of computation efficiency, problem settings, techniques, and application scenarios.

download PDF View the PDF of this article      csdl View this issue in the digital library

Editorials and Announcements


  • TKDE now offers authors access to Code Ocean. Code Ocean is a cloud-based executable research platform that allows authors to share their algorithms in an effort to make the world’s scientific code more open and reproducible. Learn more or sign up for free.
  • We are pleased to announce that Xuemin Lin, a Scientia Professor in the School of Computer Science and Engineering at the University of New South Wales, Australia, has been named the new Editor-in-Chief of the IEEE Transactions on Knowledge and Data Engineering starting in 2017.


Guest Editorials

Reviewers List

Annual Index

Access recently published TKDE articles

RSS Subscribe to the RSS feed of recently published TKDE content

mail icon Sign up for e-mail notifications through IEEE Xplore Content Alerts

preprints icon View TKDE preprints in the Computer Society Digital Library

Computing Now