Finally, it is shown among other results that for an ultimate definite automaton A the following are equivalent: 1) A is a GRM, 2) A is an RM, 3) A is strongly connected.

On page 230 the reference to Theorem 4.3 should be to Lemma 4.3. Also, the use of two different symbols for union appears quite unnecessary.

J. A. BRZOZOWSKI
Dept. of Appl. Analysis and Computer Sci.
University of Waterloo
Waterloo, Ontario
Canada

Let A be a finite alphabet and A^* the set of all finite words (sequences of symbols) over A. An event is a subset of A^*; it is regular if it is accepted by a finite automaton. Let U, V be events; then $UV = \{ z \mid z = xy, \ x \in U, \ y \in V \}$ where xy is the concatenation of the words x and y and U^* is the closure of U under the operation of concatenation with the empty word included in U^* by definition. U is a star event iff $U = V^*$ for some event V; U is a comet iff $U = ST$ where S is a star event; U is prime iff $U = V_1V_2$ implies that either V_1 or V_2 is the event containing the empty word only. The paper under review deals with the concatenative decomposition and representation of regular events in the form of comet events, union of star events, or concatenative products of star events and prime events. Typical results are: an effective algorithm is given for deciding whether a given event is representable in the form of a union of maximal star events; a unique canonical representation of comet events is exhibited; it is proved that every event can be represented as a finite concatenative product of star events and prime events, this result solving an open problem posed by Paz and Peleg. The exposition is clear and lucid. The paper has combinatorial flavor, and it proves that the theory of regular events is richer than one might expect.

A. PAZ
Technion
Haifa, Israel