Human Behavior-Oriented Adaptive Texture Mapping: A Time-Critical Approach for Image-Based Virtual Showrooms
Issei Fujishiro, Tomoko Maruyama, Rika Tanaka, Ochanomizu University

An Adaptive Multi-Resolution Modeling Technique Based on Viewing and Animation Parameters
Rynson W. H. Lau, Danny S.P. To, Hong Kong Polytechnic University

Travel in Immersive Virtual Environments: An Evaluation of Viewpoint Motion Control Techniques
Doug A. Bowman, David Koller, Larry F. Hodges, Georgia Institute of Technology

Virtual Environments for Shipboard Firefighting Training
David L. Tate, Linda Sibert, Naval Research Laboratory
Tony King, Naval Computer and Telecommunications Station

Gorillas in the Bits
Don Allison, Brian Wills, Larry F. Hodges, Jean Wineman, Georgia Institute of Technology

The Sensitivity of Presence to Collision Response
S. Uno, Canon, Inc., Mel Slater, University College London

Distributed Virtual Reality for Everyone: A Framework for Networked VR on the Internet
Wolfgang Broll, GMD FIT

A Dead-Reckoning Algorithm for Virtual Human Figures
Tolga K. Capin, Daniel Thalmann, Swiss Federal Institute of Technology
Igor Sunday Pandzic, Nadia Magnenat Thalman, University of Geneva

Virtual Actors and Avatars in a Flexible User-Determined-Scenario Environment
D.M. Shawver

Contact Sensation in the Synthetic Environment Using the ISU Force Reflecting Exoskeleton
G.R. Luecke and Y.-H. Chai

Texture Presentation by Vibratory Tactile Display
Y. Ikei, K. Wakamatsu, and S. Fukuda
Human Behavior-Oriented Adaptive Texture Mapping: A Time-Critical Approach for Image-Based Virtual Showrooms

Issei Fujishiro, Tomoko Maruyama, Rika Tanaka, Ochanomizu University

A scene of test showroom and interaction monitor.

An Adaptive Multi-Resolution Modeling Technique Based on Viewing and Animation Parameters

Rynson W. H. Lau, Danny S.P. To, Hong Kong Polytechnic University
Mark Green, University of Alberta

Simplification examples.
Travel in Immersive Virtual Environments: An Evaluation of Viewpoint Motion Control Techniques

Doug A. Bowman, David Koller, Larry F. Hodges,
Georgia Institute of Technology

Environment for the spatial awareness experiment.

Virtual Environments for Shipboard Firefighting Training

David L. Tate, Linda Sibert, Naval Research Laboratory
Tony King, Naval Computer and Telecommunications Station
Navy firefighters use a virtual ex-USS Shadwell for firefighting training and mission rehearsal.
Don Allison, Brian Wills, Larry F. Hodges, Jean Wineman, Georgia Institute of Technology

A virtual Willie B defending his virtual family group.

The Sensitivity of Presence to Collision Response

S. Uno, Canon, Inc., Mel Slater, University College London

The bowling game with collision response. Showing the effect after a successful throw, where the ball has bounced back to the other side. We see the participant's virtual hand, and the buttons used to control the experimental parameters.
Two screen shots of GMD's multi-user VRML browser Small View, showing the views of two different users.

Example frames from the actual 'football-kick' sequence, and the corresponding predicted frames. First row is the actual sequence, and the other three rows are the predicted motions when the message communication is reduced to 90%, 60% and 50% by dead-reckoning.
Virtual Actors and Avatars in a Flexible User-Determined-Scenario Environment ... 170
D.M. Shawver
Trainer’s view of the shoothouse.

Contact Sensation in the Synthetic Environment Using the ISU
Force Reflecting Exoskeleton ... 192
G.R. Luecke and Y.-H. Chai
ISU Force Reflecting Exoskeleton and the Synthetic Environment.
Texture Presentation by Vibratory Tactile Display

Y. Ikei, K. Wakamatsu, and S. Fukuda

Vibratory Tactile Display System.