Abstract
Program analysis, testing and verification are key techniques for building confidence in and increasing the quality of software systems. Such activities typically cost upwards of 50% of total development costs. Automation aims to allow both reduced costs and more thorough analysis, testing and verification and is vital to keep pace with increasing software complexity. This workshop follows on from the successful workshop held as part of ICSE 2000 in Ireland to further discuss these issues and the current start-of-the-art.

1 Introduction
Software verification is an expensive process, typically costing upwards of 50% of the total software development costs. Automation has massive potential to reduce costs, increase quality and reduce time-to-market. Many verification techniques exist and are being actively researched: static analysis, testing and formal verification. How ever, they have largely been applied as isolated technologies. Due to recent developments in static analysis, automated testing and automated program verification, the boundaries between these fields have begun to blur. There are many open questions regarding the integration of automated testing and verification, the relationships between different algorithms, and the use of static analysis to assist testing and verification.

The goal of this workshop is to gather the most active researchers and industrial practitioners from the fields of automated program analysis, testing and verification to discuss the overlap and integration between these fields. The workshop will explore both the start of the art and the state of practice. Relevant issues include theoretical foundations, tools and techniques, empirical studies and industrial experience. At the first WAPATV workshop in Limerick, transferring the state-of-the-art advances into the state-of-practice was identified as a major issue.

In addition to discussing recent advances and industrial achievements, this workshop will attempt to examine the barriers to technology transfer and how they can be circumvented.

2 Topics of Interest
Both academic and industrial research reports and position statements are of interest to the workshop as are industrial experience reports. Topics of interest for discussion during the workshop include, but is not limited to:

- static analysis techniques for program reduction
- static analysis techniques for error detection
- automated testing and test-case generation
- automated regression testing
- industrial case studies
- automated abstraction
- technology transfer issues
- integration of verification and testing techniques
- analysis techniques to support verification/testing

3 Program Committee

John Clark University of York
Dennis Dans University of Eindhoven
Phyllis F Randal Polytechnic University
Andrew Galloway University of York
Patrice Godefroid Lucent Technologies
John Hatcliff Kansas State University
Maas Heimdahl University of Minnesota
Gerard Holzmann Lucent Technologies
Bryan Jones University of Glamorgan
Bogdan Korel Illinois Institute of Technology
Rustan Leino Compaq Systems Research Center
Corina Pasareanu Kansas State University
Riccardo Sisto Polytechnic of Torino
Daniel Weise Microsoft Research
Martin Woodward University of Liverpool