Identifying IT User Mindsets: Acceptance, Resistance and Ambivalence

Liette Lapointe
McGill University
liette.lapointe@mcgill.ca

Anne Beaudry
Concordia University
abeaudry@jmsb.concordia.ca

Abstract
Despite the progress that has been made in understanding acceptance and resistance, there remains a need to further investigate the nature of these core IS constructs. Our review and analysis of the literature on acceptance and resistance leads us to suggest that these are multidimensional constructs that are associated with a complex mix of behavioral manifestations. We argue that acceptance and resistance are mindsets comprising three dimensions: emotions, cognition, and attitudes, and that the related behaviors are manifestations of these individuals’ mindset. User behaviors are positioned along two dimensions. The first one represents the mindset of the user and the other represents the compliance of user behavior with the IT usage policies. We use our framework as a foundation for proposing a typology of IT user behaviors that comprises five archetypes – engaged, resigned, deviant, dissident, and ambivalent. For each archetype, we derive a theoretical proposition.

1. Introduction
In Information System (IS) research, acceptance and resistance have traditionally been studied independently. In addition, there is an implicit assumption that acceptance is good and leads to fruitful IT use whereas resistance leads to non-use and has bad consequences. We argue that there is a need to revise these assumptions and reconcile the disparate research streams regarding these two core IS constructs. Despite the progress that has been made in framing and understanding acceptance and resistance, there remains a need to further clarify what acceptance and resistance are and into what behaviors they translate.

Based on our findings, we argue that acceptance and resistance share the same conceptual space, each encompassing a cognitive, attitudinal, and emotional dimension that can be associated to various behavioral manifestations. These behaviors, which include but are not limited to usage, are compliant – or not – with IT usage policies. We propose a typology of IT behaviors that takes into account these two dimensions. Our typology comprises five archetypes: engaged, resigned, deviant, dissident, and ambivalent. Each archetype involves a specific mindset and is associated to a set of behavioral manifestations.

This paper is structured as follows. In the following sections, we explain our review method and present our analysis of the literature. Then, we introduce our typology of IT user behaviors and put forth related research propositions. The paper ends with a discussion of the results and identifies areas for future research.

2. Review Method
We started with a literature review that focused primarily on the definitions and conceptualizations of IT acceptance and resistance proposed in the extant IS literature. In addition, we took into account how these core IS constructs have been studied and how they have been associated with IT behaviors.

Our review covers papers on acceptance and resistance published since 1971 in leading North American and European IS journals as well as in top management journals that publish IS research. These journals include (in alphabetical order) the EJIS, I&M, I and O, ISJ, ISR, IT and People, JIT, JMIS, JAIS, Mgmt Sc, MISQ and Org Sc. Seminal papers on acceptance or resistance published elsewhere were also included in our review.

The process leading to the identification of the papers to be included in our review comprised three steps. The first step consisted of querying online top search engines for each of the above-mentioned journals. This led to the identification of 331 papers – 270 for acceptance and 61 for resistance – published between January 1971 and December 2012. The second decision on whether or not to include a paper in the study was made after reading all the identified papers using inclusion and exclusion criteria. When acceptance and/or resistance were defined, measured or utilized in a given study, the paper was included in our study. A number of papers in which the word “acceptance” or “resistance” was only mentioned in passing were excluded from the study. Similarly,
papers were withdrawn from our initial pool when the occurrence of either “acceptance” or “resistance” was only found in their title or keywords list.

Finally, we included other relevant papers that address acceptance or resistance but which were published in other outlets. These papers were identified using the reference lists of the papers previously included in our sample. As a result, we kept 187 papers (149 for acceptance and 38 for resistance) published between 1977 and December 2012.

Once this final pool of papers had been identified, all the papers were carefully read, coded and analyzed in order to build the matrices that were used as a foundation for our theoretical framework. Each paper was examined to identify its proposed definition of acceptance or resistance, the theoretical foundations of the study, the relationships between acceptance/resistance and IT behaviors (including use/non-use), the operationalization and/or measures used for the acceptance or resistance construct, and the study results. All papers were coded by at least two independent coders and any discrepancy was resolved by consensus, which has been identified by Larsson [1] as a superior method for correcting coding mistakes. The final coding results were then validated by the authors, who conducted the actual content analysis of the papers.

3. Acceptance and Resistance: A Literature Review
As described below, the IS literature mostly treats acceptance and resistance as a dichotomy. Although these studies have been very useful in furthering our understanding of user reactions to IT, they do not account for the overall complexity of these phenomena. In this regard, our literature review reveals the extent to which IS research implicitly takes for granted that acceptance leads to use and resistance results in non-use. Acceptance and use are often used interchangeably in the literature e.g. [2, 3] whereas resistance to IT has often been considered a behavior that should be prevented and eradicated e.g. [4, 5]. Most studies do not take into account the fact that sometimes acceptance may be related to misuse and that resistance may prove beneficial to an organization. For example, resistance may convey useful information that can ultimately prevent misuse behaviors [6] or other undesirable outcomes such as the use of a dysfunctional system [7].

3.1. IT Acceptance
Extant research mainly conceptualizes acceptance as either the usage behavior itself e.g. [8, 9] or as the behavioral intention to use an IT e.g. [10, 11]. This is in line with the fact that about half of the acceptance studies in our sample rely on TAM, TPB, IDT or TRA as their theoretical framework. As a corollary, in empirical studies IT acceptance has mainly been measured either by using items based on Davis’s behavioral intention instrument or by assessing the quantity or frequency of use.

IT acceptance has nevertheless been conceptualized and defined in other ways. IS researchers are still unclear about the fundamental nature of the acceptance construct. For instance, in addition to its conceptualization as a usage behavior or a behavioral intention to use, acceptance has been conceptualized as a process e.g. [12, 13], an attitude e.g. [11, 14], and a psychological state e.g. [15, 16].

As a behavior, IT acceptance has been defined not only as IT use, but also as initial use [17], purchasing [18], a post-implementation behavior [19], and as doing things beyond one’s responsibility to ensure system success [20]. While Cooper and Zmud [12] suggest that acceptance can be both a process and a product, they also define it as the usage behavior itself. As a behavioral intention, acceptance has not only been defined as one’s intention to use an IT but also as an intention to adopt [21, 22], to reuse [23], to continue to use [24], and to return to a web site [25].

As a process, acceptance has been defined both as a sequence of individual reactions [13] and as involving organizational inducement of individuals’ commitment to IT use [12]. IT acceptance has also been conceptualized as a psychological state. As such, it has been defined as “the degree of willingness of an individual or group to utilize information systems” [16], p. 550, a potential user predisposition toward personally using a specific system [26], “an individual psychological state with regard to his or her voluntary, intended use of a technology” [27], p. 701, an “individual disposition to adopt and use new IT” [28], p. 206, and as user satisfaction [29, 30].

Some researchers have also conceptualized IT acceptance as a multidimensional construct; for instance, both as a behavior and a psychological state e.g. [31, 32]. Schwarz and Chin [32] (p. 232-233) define IT acceptance as “both a user's behavioral interaction with IT and his/her psychological understanding/willingness or resistance/acceptance that develops within a given setting.” Meyer [33] (p. 276) argues that acceptance comprises two dimensions: an attitude and a behavior. The earliest definition of acceptance we could find also falls into the multidimensional category and can be attributed to Ives and Olson [34], who suggest that “system acceptance is one of the two outcomes of user involvement […] improved system acceptance includes increasing user perceived ownership of the system, decreasing resistance to change, and increasing commitment to the
new system” (p. 590). Furthermore, they suggest that system acceptance includes both system usage behavior and attitudes (pp. 597-598).

Overall our review of the extant literature reveals that over the past decades, user acceptance has been conceptualized, defined and measured in many different ways. However, most papers are ambiguous regarding whether their use of the acceptance construct reflects an attitude, a belief, an intention or an action [19]. Despite the fact that many conceptualizations and definitions of IT acceptance have been suggested and co-exist since Saga and Zmud’s [19] paper, our review of the literature reveals that most studies still do not provide an explicit conceptualization or definition. In many instances, even if the authors did not explicitly define acceptance, it became clear from the instrument of measure used that they were actually studying either IT adoption, intention to use or usage. In short, while the extant literature suggests various conceptualizations and definitions of acceptance, most researchers rely on IT use or intention to use as a proxy for acceptance.

3.2 Resistance to IT

While interest in the phenomenon of resistance to IT appears to be growing, resistance has received relatively little attention when compared to IT acceptance. Our review also reveals that there is no clear agreement in the literature on how resistance to IT ought to be defined and studied; many authors do not even offer a clear definition of how they apprehend resistance in their research.

The most common conceptualization of resistance to IT is that of a behavior. In early work studying user resistance to IT, it is defined as a set of behaviors exhibited by users to express dissatisfaction. For example, Markus [35] (p. 433) defines resistance to IT as “behaviors intended to prevent the implementation or use of a system or to prevent system designers from achieving their objectives”. Resistance has also been defined as “an adverse reaction to a proposed change which may manifest itself in a visible, overt fashion (such as through sabotage or direct opposition) or may be less obvious and covert (such as relying on inertia to stall and ultimately kill a project)” [36] p. 398. Kane and Labianca [37] define resistance as avoidance, which “implies that the individual has the opportunity and even the need, but consciously circumvents using the system” (p.505).

Other authors disagree with this conceptualization of resistance, arguing that resistance, contrary to acceptance, is not a behavior. Bhattacharjee and Hikmet [38] for example, see resistance as cognition and define it as “a cognitive force precluding potential behavior” (pp. 727-728). In a similar vein, for some authors resistance can be regarded as a psychological state. They believe that resistance represents a normal psychological reaction when a person perceives the consequences of an IT implementation as negative e.g. [39, 40]. Resistance has also been construed as a cognitive distance that translates “negative affect towards the IT implementation and manifests a perception of seeing through the espoused goals of the implementers” [41] p. 293.

In other research, the exact nature of resistance is more ambiguous. This is the case of the definition proposed by Kim and Kankanhalli [42], who define user resistance as “opposition of a user to change associated with a new implementation” (p. 688). While Robey [43] clearly conceptualized resistance as an attitude in his research model, he did not provide any definition of the construct.

Another view of resistance is as an organizational disruption. This is the case in one of the earliest definitions of resistance to IT, proposed by Keen, wherein “The tactical approach to implementation sees resistance as a signal from a system in equilibrium that the costs of change are perceived as greater than the likely benefits” [44] p. 27. In other studies, resistance has been defined as a process. For example, it has recently been suggested that resistance is a two-phase process: an initial phase that is cognitive or emotional and a second one consisting of the decision to resist [7]. It was argued that resistance can be either positive or negative, and that it often manifests in user workarounds, i.e. deviations from set procedures.

Last, resistance has also been conceptualized as a multidimensional construct, for example, as behaviors that occur following perceptions of threats associated with the interaction between an object and initial conditions [45, 46]. During implementation, some triggers can either modify or activate initial conditions; a modification of the object of resistance may ensue. From the interaction of this new object and new set of initial conditions, different resistance behaviors may follow.

Notwithstanding the importance researchers attribute to resistance in the context of IT implementation, few studies have focused on resistance itself as their research object, and even fewer have actually ‘measured’ resistance. Based on our review of the literature, only a few articles e.g. [35, 45, 47] have proposed a theoretical framework with which to understand how and why resistance can appear during an IT implementation project.

Our literature review further reveals that, until recently, most published articles about resistance were purely conceptual. In the past years, the few empirical studies that have been published were based on case studies [7, 41, 48], with the exception of four surveys
[37, 42, 49, 50] and one experiment [51]. Consequently, only a handful of papers have actually measured the resistance construct, often by focusing solely on refusal to use or refusal to change e.g. [38, 51].

4. A Typology of IT User Behaviors

4.1 Users Mindset

Based on our literature review and analysis, we argue that acceptance and resistance share the same conceptual space and contend that they both represent a “mindset.” By mindset, we mean an individual’s way of apprehending a reality that can be shared across a specific group but distinct from other groups. In the literature in psychology and other disciplines, mindsets have been defined from different perspectives and have been associated with mental models [52], pre-dispositions [53], IT architectural knowledge [54], individual character traits [55], and conceptual mapping [56].

In our proposed conceptualization of acceptance and resistance, we define a user’s mindset as a complex multidimensional mental state that is based on cognitions, emotions, and attitudes that predisposes an individual to perform IT-related behaviors of a certain type. More specifically, we argue that acceptance and resistance to IT comprise an emotional dimension (e.g., fear, anxiety, excitement), a cognitive dimension (e.g., performance expectancy, self-efficacy, perceived ease of use), and an attitudinal dimension (e.g., like/dislike, good/bad). Taken together, these three dimensions will, in turn, be associated to behavioral manifestations, which can be many and varied (e.g., user or task adaptation, venting, usage, and even sabotage).

This definition implies the existence of frames that shape one’s actions through a repertoire of potential reactions and responses. Though a mindset may be shared across a group, there will nevertheless be variation, and these differences will translate into a wide array of possible behavioral reactions within a given group.

4.2 IT Usage Policies

Organizations devise IT usage policies to explicitly indicate to their employees which behaviors are considered appropriate or not with respect to their use of the firm’s IT resources [57]. These acceptable IT usage policies allow firms to lessen risks such as transmission of confidential data and trade secrets by employees as well as to prevent Internet abuses in the workplace including spamming, shopping, and gambling [59].

The benefits of acceptable IT usage policies are also sought for by various types of organizations such as e-retailers and social networks that use them to ensure appropriate behaviors from their clients and members. Such policies also provide organizations with a mechanism for dealing with unacceptable IT-related behaviors.

Compliance is about adhering to rules; it implies that one is acting according to relevant IT usage policies. Employees’ non-compliance with such policies threatens, among others, the integrity of the data, and can imply significant costs or losses for organizations [60]. In a similar vein, social networks reserve the right to close a member’s account should they not act according to their usage policy.

4.3 Proposed Typology

From this, we propose a typology of user behaviors. Each quadrant in Figure 1 corresponds to a different combination of user mindset (acceptance or resistance) and extent of compliance with IT usage policies. We also took into account the possibility of ambivalence as a mindset. As further explained below, by ambivalence, we mean the simultaneous experience of both acceptance and resistance in a person’s mind where one’s emotions, cognitions, and attitudes toward the IT and its use would not be totally positive or negative but rather mixed. The five archetypes are not portrayed as personality traits that would define a given individual; rather they are time and context-specific. Because an individual’s mindset denotes one’s personal cognitive, emotive, and attitudinal reaction to a given technology, a user may exhibit a behavior that is associated with one archetype for a given IT while performing behaviors belonging to another archetype for a different technology. For example, a user behavior may well belong to the “Dissident” category with regard to his/her Blackberry use and to the “Resigned” category when using the company’s ERP.

In addition, the quadrants are not mutually exclusive and a user’s mindset with respect to a given technology may evolve over time. Many social and organizational factors such as group norms and values, organizational incentives, opinion leaders, or training sessions, can potentially trigger an individual to change his/her mindset or entice one to more or less comply with IT usage policies.
5. Propositions

5.1 Engaged Behaviors

In the upper right quadrant – the Compliant Acceptance archetype – we find a category of user behaviors that we label engaged. The concept of engagement has been studied in the organizational behavior literature as a way to explain organizational commitment and organizational citizenship behavior [61]. Engagement has been defined as “task behaviors that promote connections to work and to others,” which are expressed physically, cognitively, and emotionally and which stimulate personal development and increase employee motivation [62] p. 700. Schaufeli et al. [63] define engagement as a “pervasive affective-cognitive state that is not focused on any particular object, event, individual or behavior” that acts to enhance organizational productivity (p. 74).

Engagement is reflected by one’s self-efficacy, mastery orientation, congruent values, persistence, low anxiety, enjoyment, active participation, and positive intentions [64]. Engagement is typically associated with participation. Political engagement typically encompasses activities such as voting, donating money to or working for a campaign or political group, attending meetings or candidate rallies, or wearing a button [65], whereas civic engagement refers to volunteer work, participation in community betterment projects, and fund-raising efforts [65, 66].

We thus define engaged behaviors as those that are associated with an acceptance mindset (i.e. positive emotions, cognitions and attitudes) and that are compliant with IT usage policies, so as to reap the IT’s expected benefits. This type of behavior has implicitly been the focus of most of acceptance research in the IS literature. From this literature we can infer that engaged behaviors are exhibited by users who perceive the IT as easy to use and useful e.g., [8]; having behavioral control e.g., [67, 68]; holding self-efficacy beliefs [69, 70]; experiencing flow [71], cognitive absorption [71, 72], and playfulness [73]; and having a positive attitude toward the IT [74] and its usage [75].

Empirical evidence in IS also suggests that appropriation [58], internalization, and routinization [12] are examples of engaged user behaviors.

<table>
<thead>
<tr>
<th>Acceptance Mindset</th>
<th>IT Usage Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissident</td>
<td>Non-Compliant</td>
</tr>
<tr>
<td>Engaged</td>
<td>Compliant</td>
</tr>
<tr>
<td>Ambivalent</td>
<td></td>
</tr>
<tr>
<td>Deviant</td>
<td></td>
</tr>
<tr>
<td>Resigned</td>
<td></td>
</tr>
</tbody>
</table>

Proposition 1: A user with an acceptance mindset who complies with IT usage policies will perform behaviors from the engaged category.

5.2 Resigned Behaviors

In the lower right quadrant – the Compliant Resistance archetype – we find a category of user behaviors that we call resigned. Other domains have used the terms “resigned compliance” [76, 77] or “resigned acceptance” [78]. When users exhibit resigned behaviors, they generally have a marked antipathy to an innovation, but nevertheless feel compelled to adopt it for a variety of reasons: for example, they may “understand” that it will be useful in some way, if only to the organization.

We thus define resigned behaviors as those that are associated with a resistance mindset (i.e. negative emotions, cognitions and attitudes) but that are compliant with IT usage policies. Resigned behaviors may be performed because one feels that s/he has an obligation to use the IT and therefore uses it, at least to some degree, in compliance with IT usage policies. Resigned behaviors might manifest either that the user feels powerless to act otherwise or does not dare engaging in more blatant resistance behaviors. When one’s behavior belongs to this archetype, the user sees his/her use of the IT as the least restrictive alternative. The IS literature identifies a number of resigned behavioral manifestations. Examples include saying that the implementation was unfair [79], manifesting annoyance or unhappiness [80], gossiping [81], using humor [4], complaining [82], over reporting [83], and doing as little as possible [6].

Proposition 2: A user with a resistance mindset who complies with IT usage policies will perform behaviors from the resigned category.
5.3 Deviant Behaviors

In the lower left quadrant – the Non-Compliant Resistance archetype – we find a category of behaviors that we label deviant. Workplace deviance has been defined as a volitional behavior that violates significant organizational norms and, in so doing, threatens the well-being of the organization, its members, or both [84]. Organizational norms consist of basic moral standards as well as other traditional community standards, including those prescribed by formal and informal organizational policies, rules, and procedures [85]. Organizational deviance has been defined as acts directed against the company and its systems that can affect production and efficiency [86]. Workplace deviance can take many different forms, from minor acts such as spreading rumors and embarrassing co-workers to serious acts such as theft and sabotage [87].

We thus define deviant behaviors as those associated with a resistance mindset and that are not compliant with IT usage policies: they do not follow the organization’s prescribed procedures with regard to the IT usage pattern. The deviant behaviors studied in the IS literature include for example sabotage [88], refusing to comply [4], pretending to comply [5, 89], bypassing the system [89], and deliberately committing errors [81]. The phenomenon of deviant behaviors, which may include criminal acts, presents a real problem that can have serious consequences for individuals and organizations [90]. Computer-related deviant behaviors also include creating and disseminating viruses [91], cyber stalking, using another’s password without their authorization, and changing or obtaining others’ files or data without authorization [90].

Proposition 3: A user with a resistance mindset who does not comply with IT usage policies will perform behaviors from the deviant category.

5.4. Dissident Behaviors

In the upper left quadrant – the Non-Compliant Acceptance archetype – we find a category of behaviors that we call dissident. According to our typology, dissident user behaviors are akin to aberrant behaviors. In sociology, the term “aberrant” implies a behavior that is usually kept secret and adopted mainly for reasons of self-interest, such as certain unusual sexual practices [92]. Dissident behaviors are usually not associated with overt disobedience and are carried out for personal reasons rather than to force social change. Typically, violence is avoided in dissident behaviors [93] and, in contrast with deviance; it is not associated with “illegal” behaviors [94].

Therefore, we define dissident behaviors as those associated with an acceptance mindset but are non-compliant with IT usage policies and depart from what is considered “normal” in a given context. Documentation of dissident behaviors in the IS literature is sparse. However, some authors have mentioned some problematic usage behaviors, such as excessive amounts of usage time, also labeled compulsive use [95, 96]. Compulsive use of Smart phones, for example, has also been studied [97, 98]. Salisbury and Gopal [99] have discussed cases of abusive use of IT. Young [100] reported on an early case of addictive use of the Internet while Turel et al [101] investigated online auction addiction. Further examples of IT misuse have been provided by Marakas and Hornik [6]. Davis [102] addressed the issues of overuse and abuse of specific Internet functions such as auction houses, online pornography, online stock trading services, and gambling sites.

Proposition 4: A user with an acceptance mindset who does not comply with IT usage policies will perform behaviors from the dissident category.

5.5. Ambivalent Behaviors

In addition to the four archetypes identified above, we must take into account the fact that it may not always be possible to distinguish the nature of behaviors in such a crystal-clear fashion. To account for potential ambiguity, we propose the existence of a fifth archetype that we label “Ambivalent.” Ambivalence is associated with adjectives such as ‘conflicted’ and ‘indecisive’ [103] and is related to uncertainty or indecisiveness [104]. Ambivalence represents an alternative mindset that can be associated to “mild” behavioral manifestations from any of the four quadrants.

In the IS context, ambivalence can be defined as a mental state in which individuals experience simultaneous, conflicting emotions, cognitions and attitudes toward a system and its use. Ambivalence, which has been identified as the most prevalent response to an organizational change [105], has been mostly overlooked in IS research [106]. Beaudry and Pinsoneault [107] and Lapointe and Rivard [45] refer to instances where users were excited by the new IT but, at the same time, afraid of the consequences on their work of using the system. Behaviors associated with ambivalence can include, for example, delegating usage of the new IT to an assistant e.g. [107], complaining [82], pretending to comply [5], or using only the IT’s minimally required features [6].
Proposition 5a: A user with an ambivalence mindset who complies with IT usage policies will perform behaviors corresponding to a mild form the engaged or resigned category.

Proposition 5b: A user with an ambivalence mindset who does not comply with IT usage policies will perform behaviors corresponding to a mild form of the deviant or dissident category.

6. Discussion

Barki [108] argues that, given the difficulties of adequately capturing and representing the multifaceted reality in research models, many constructs end up being narrowly defined, and hence, provide only limited and truncated tools for examining complex organizational phenomena. This paper tries to overcome some of these limitations and argues that acceptance and resistance share the same conceptual space and represent a user’s mindset, i.e., a multidimensional mental state comprising cognitive, attitudinal, and emotional dimensions that predispose individuals to behavioral reactions to IT. It also identifies a third mindset – ambivalence – which represents a common state of mind of individuals facing change or novelty. By taking into account both the user mindset and compliance with IT usage policies, our typology offers a finer grained understanding of user behaviors and provides insights about their triggers and consequences. Further research efforts have to account for the fact the user’s mindset represents a frame that shapes one’s actions through a repertoire of different IT-related behaviors. Furthermore, these user reactions may be quite different depending on the technology, the context, the acceptable usage policies and the extent to which one complies with them.

Future research efforts should seek to refine our typology of IT behaviors (Figure 1) and empirically validate our propositions. Studies are needed to examine the specific underlying cognitive, attitudinal, and emotional structure of user mindsets and their associated behavioral manifestations. Moreover, it would be important to identify the actual antecedents of each of the five archetypes in our typology. To date, significant research efforts have been devoted to identify what triggers individuals to perform “engaged” behaviors relying on models such as TAM. IS research is however surprisingly sparse or even mute about antecedents of deviant, dissident, or resigned IT-related behaviors. In addition, there is a need to further study the fact that users’ IT-related responses may sometimes be ambiguous; a user may be excited by the prospect of using a new IT but, at the same time, be afraid of the negative consequences it may have on him/her personally or professionally. A better understanding of the nature and dynamics of ambivalence is needed in IS research. Research efforts are thus required to examine ambivalence in users’ responses. More specifically, the dynamics and evolution of ambivalence should be investigated.

Another research avenue lies in studying the individual and organizational impacts of the behaviors associated with the different archetypes. IS research has assumed, for the most part, that the consequences of acceptance are positive and that those of resistance are negative. It must be pointed out that while IS research to date has mainly been concerned with “engaged behaviors,” IT use has mostly been studied in a very generic way. As a result, we do not know if what has been studied until now as “IT usage” always belongs to the engaged category, because the research is either not explicit on this point or stops at user’s intention to use. We therefore argue that significant research efforts are required to understand the impacts and consequences associated with the behaviors belonging to each archetype of the typology.

7. Conclusion

This paper provides a number of contributions. First, it offers a definition of acceptance, resistance and ambivalence as mindset, which are multidimensional mental states comprising emotions, cognitions and attitudes. This proposed definition reconciles extant acceptance and resistance research into an integrative framework in which each piece, although required to complete the puzzle, is not in itself sufficient to uncover the big picture. With this paper, we show that research efforts in this important stream have taken a piecemeal approach, and that it is now time to reconcile their results and examine the whole repertoire of user behaviors.

Second, we propose a typology of five archetypes of IT behaviors: engaged, dissident, resigned, deviant, and ambivalent along with related research propositions. Our typology is based, on the one hand, on the individual’s mindset and, on the other, on the extent to which users’ behaviors comply with IT usage policies. While our typology allows for generalizations among groups of IT users, it also makes it possible to differentiate between individual’s stance and their behavioral reactions, thus maintaining the possibility of studying individual agency. It also allows for a better understanding of the wide range of human-technology interactions exhibited by users.

Third, the paper offers a framework that allows managers to better understand IT user behaviors and their triggers. It thus contributes to provide managers
with the insight needed to develop appropriate management strategies.

Acknowledgements
Funding for this project has been provided by the Social Sciences and Humanities Research Council (SSHRC) of Canada and by the Fonds québécois de recherche sur la société et la culture (FQRSC)

8. References

72. Yi, M.Y., Jackson, J.D., Park, J.S., and Probst, J.C., Understanding Information Technology Acceptance by

