Six papers appear in this minitrack on logic modeling, comprising two sessions of three papers each. These papers cover a range of issues and methodologies, from the descriptive and empirical to the formal and mathematical.

The first paper is "Logical vs Numerical Inference on Statistical Databases," by Sumit Dutta Chowdhury, George T. Duncan, Ramayya Krishnan, Stephen Roehrig, and Sumitra Mukherjee. This paper presents new results in the important and nettlesome area of database confidentiality, using a numerical approach to logical inference. The next paper in the first session is "Defeasible Logic Graphs for Decision Support," by Donald Nute and Katrin Erk. The paper explores the use of graph-based representations for defeasible reasoning. Such representations are promising for user interfaces. Combining effective user interfaces with defeasible reasoning systems offers the prospect of exiting new kinds of DSS. The third paper in the first session is "A Propaedeutic on Logic for Object-Oriented Systems Analysis and Design," Steven O. Kimbrough and William J. Vachula. The paper presents and discusses a series of requirements for support of systems analysis and design, which requirements are far from being met with existing CASE tools. The paper then argues that these requirements may be met via straightforward inference on logical representations of systems analysis diagrams.

In the second session, the first paper is by Scott A. Moore, and is entitled "Testing Speech Act Theory and Its Applicability to EDI & Other Computer-Processable Messages." (The title may also serve as an abstract of the paper.) Moore reports on an empirical study he performed, a quasi-experiment, in which he mapped the message structures of several formal communication protocols to speech act theory. His results confirm the aptness of speech act theory for communications in electronic commerce. The next paper, "Logical Specification of Resource Consumption and Production," by Young U. Ryu, investigates the application of linear logic for modeling systems of disposable resources, and demonstrates how this may be implemented in a logic programming environment. The third paper in the second session is "GHMI: A General Hypertext Data Model Supporting Integration of Hypertext and Information Systems," by Jiangling Wan and Michael Bieber, who present a formal logic model for a new and very rich kind of hypertext. Efforts such as this should help promote interoperability of hypertext systems.