The Community for Technology Leaders
Green Image
Issue No. 01 - January/February (2011 vol. 37)
ISSN: 0098-5589
pp: 126-141
Gul Agha , University of Illinois at Urbana-Champaign, Urbana
YoungMin Kwon , Microsoft Corporation, Redmond
We propose a new probabilistic temporal logic, iLTL, which captures properties of systems whose state can be represented by probability mass functions (pmfs). Using iLTL, we can specify reachability to a state (i.e., a pmf), as well as properties representing the aggregate (expected) behavior of a system. We then consider a class of systems whose transitions are governed by a Markov Chain—in this case, the set of states a system may be in is specified by the transitions of pmfs from all potential initial states to the final state. We then provide a model checking algorithm to check iLTL properties of such systems. Unlike existing model checking techniques, which either compute the portions of the computational paths that satisfy a specification or evaluate properties along a single path of pmf transitions, our model checking technique enables us to do a complete analysis on the expected behaviors of large-scale systems. Desirable system parameters may also be found as a counterexample of a negated goal. Finally, we illustrate the usefulness of iLTL model checking by means of two examples: assessing software reliability and ensuring the results of administering a drug.
Probabilistic model checking, linear temporal logic, Discrete Time Markov Chain, pharmacokinetics.
Gul Agha, YoungMin Kwon, "Verifying the Evolution of Probability Distributions Governed by a DTMC", IEEE Transactions on Software Engineering, vol. 37, no. , pp. 126-141, January/February 2011, doi:10.1109/TSE.2010.80
88 ms
(Ver 3.3 (11022016))