The Community for Technology Leaders
Green Image
Issue No. 02 - March/April (2010 vol. 36)
ISSN: 0098-5589
pp: 226-247
Mark Harman , King's College London, London
Phil McMinn , University of Sheffield, Sheffield
Search-based optimization techniques have been applied to structural software test data generation since 1992, with a recent upsurge in interest and activity within this area. However, despite the large number of recent studies on the applicability of different search-based optimization approaches, there has been very little theoretical analysis of the types of testing problem for which these techniques are well suited. There are also few empirical studies that present results for larger programs. This paper presents a theoretical exploration of the most widely studied approach, the global search technique embodied by Genetic Algorithms. It also presents results from a large empirical study that compares the behavior of both global and local search-based optimization on real-world programs. The results of this study reveal that cases exist of test data generation problem that suit each algorithm, thereby suggesting that a hybrid global-local search (a Memetic Algorithm) may be appropriate. The paper presents a Memetic Algorithm along with further empirical results studying its performance.
Automated test data generation, search-based testing, search-based software engineering, Evolutionary Testing, Genetic Algorithms, Hill Climbing, schema theory, Royal Road, testing and debugging, testing tools, artificial intelligence, problem solving, control methods, and search, heuristic methods, algorithms, experimentation, measurement, performance, theory.

M. Harman and P. McMinn, "A Theoretical and Empirical Study of Search-Based Testing: Local, Global, and Hybrid Search," in IEEE Transactions on Software Engineering, vol. 36, no. , pp. 226-247, 2009.
87 ms
(Ver 3.3 (11022016))