The Community for Technology Leaders
Green Image
Issue No. 02 - March/April (2011 vol. 8)
ISSN: 1545-5971
pp: 161-176
Mohamed Eltoweissy , Virginia Tech, Falls Church
Anh Phan Speer , Virginia Tech, Falls Church
Ing-Ray Chen , Virginia Tech, Falls Church
ABSTRACT
Data sensing and retrieval in wireless sensor systems have a widespread application in areas such as security and surveillance monitoring, and command and control in battlefields. In query-based wireless sensor systems, a user would issue a query and expect a response to be returned within the deadline. While the use of fault tolerance mechanisms through redundancy improves query reliability in the presence of unreliable wireless communication and sensor faults, it could cause the energy of the system to be quickly depleted. Therefore, there is an inherent trade-off between query reliability versus energy consumption in query-based wireless sensor systems. In this paper, we develop adaptive fault-tolerant quality of service (QoS) control algorithms based on hop-by-hop data delivery utilizing “source” and “path” redundancy, with the goal to satisfy application QoS requirements while prolonging the lifetime of the sensor system. We develop a mathematical model for the lifetime of the sensor system as a function of system parameters including the “source” and “path” redundancy levels utilized. We discover that there exists optimal “source” and “path” redundancy under which the lifetime of the system is maximized while satisfying application QoS requirements. Numerical data are presented and validated through extensive simulation, with physical interpretations given, to demonstrate the feasibility of our algorithm design.
INDEX TERMS
Wireless sensor networks, reliability, timeliness, query processing, redundancy, energy conservation, QoS, mean time to failure.
CITATION
Mohamed Eltoweissy, Anh Phan Speer, Ing-Ray Chen, "Adaptive Fault-Tolerant QoS Control Algorithms for Maximizing System Lifetime of Query-Based Wireless Sensor Networks", IEEE Transactions on Dependable and Secure Computing, vol. 8, no. , pp. 161-176, March/April 2011, doi:10.1109/TDSC.2009.54
117 ms
(Ver )