The Community for Technology Leaders
Green Image
ISSN: 0162-8828
Serhat S. Bucak , Michigan State University, East Lansing
Rong Jin , Michigan State University, East Lansing
Anil K. Jain , Michigan State University, East Lansing and Korea University, Seoul
Multiple kernel learning (MKL) is a principled approach for selecting and combining kernels for a given recognition task. A number of studies have shown that MKL is a useful tool for object recognition, where each image is represented by multiple sets of features and MKL is applied to combine different feature sets. We review the state-of-the-art for MKL, including different formulations and algorithms for solving the related optimization problems, with the focus on their applications to object recognition. One dilemma faced by practitioners interested in using MKL for object recognition is that different studies often provide conflicting results about the effectiveness and efficiency of MKL. To resolve this, we conduct extensive experiments on standard datasets to evaluate various approaches to MKL for object recognition. We argue that the seemingly contradictory conclusions offered by studies are due to different experimental setups. The conclusions of our study are, (i) given a sufficient number of training examples and feature/kernel types, MKL is more effective for object recognition than simple kernel combination (e.g., choosing the best performing kernel or average of kernels), and (ii) among the various approaches proposed for MKL, the sequential minimal optimization, semi-infinite programming, and level method based ones are computationally most efficient.
Machine learning, Introductory and Survey, Object recognition, Feature evaluation and selection

S. S. Bucak, R. Jin and A. K. Jain, "Multiple Kernel Learning for Visual Object Recognition: A Review," in IEEE Transactions on Pattern Analysis & Machine Intelligence.
181 ms
(Ver 3.3 (11022016))