The Community for Technology Leaders
Green Image
ISSN: 0162-8828
Jiang Wang , Northwestern University, Evanston
Zicheng Liu , Microsoft Research Redmond, Redmond
Ying Wu , Northwestern University, Evanston
Junsong Yuan , Nanyang Technological University, Singapore
Human action recognition is an important yet challenging task. Human actions usually involve human-object interactions, highly articulated motions, high intra-class variations and complicated temporal structures. The recently developed commodity depth sensors open up new possibilities of dealing with this problem by providing 3D depth data of the scene. This information not only facilitates a rather powerful human motion capturing technique, but also makes it possible to efficiently model human-object interactions and intra-class variations. In this paper, we propose to characterize the human actions with a novel actionlet ensemble model, which represents the interaction of a subset of human joints. The proposed model is robust to noise, invariant to translational and temporal misalignment, and capable of characterizing both the human motion and the human-object interactions. We evaluate the proposed approach on three challenging action recognition datasets captured by Kinect devices, a multiview action recognition dataset captured with Kinect device, and a dataset captured by a motion capture system. The experimental evaluations show that the proposed approach achieves superior performance to the state of the art algorithms.
Gesture, Computer vision, Video analysis

J. Wang, Z. Liu, Y. Wu and J. Yuan, "Learning Actionlet Ensemble for 3D Human Action Recognition," in IEEE Transactions on Pattern Analysis & Machine Intelligence.
105 ms
(Ver 3.3 (11022016))