The Community for Technology Leaders
Green Image
Issue No. 10 - Oct. (2018 vol. 40)
ISSN: 0162-8828
pp: 2315-2328
Jinshan Pan , Nanjing University of Science and Technology, Nanjing, China
Deqing Sun , NVIDIA, Westford, MA
Hanspeter Pfister , Harvard University, Cambridge, MA
Ming-Hsuan Yang , University of California, Merced, CA
We present an effective blind image deblurring algorithm based on the dark channel prior. The motivation of this work is an interesting observation that the dark channel of blurred images is less sparse. While most patches in a clean image contain some dark pixels, this is not the case when they are averaged with neighboring ones by motion blur. This change in sparsity of the dark channel pixels is an inherent property of the motion blur process, which we prove mathematically and validate using image data. Enforcing sparsity of the dark channel thus helps blind deblurring in various scenarios such as natural, face, text, and low-illumination images. However, imposing sparsity of the dark channel introduces a non-convex non-linear optimization problem. In this work, we introduce a linear approximation to address this issue. Extensive experiments demonstrate that the proposed deblurring algorithm achieves the state-of-the-art results on natural images and performs favorably against methods designed for specific scenarios. In addition, we show that the proposed method can be applied to image dehazing.
Image restoration, Convolution, Kernel, Image edge detection, Algorithm design and analysis, Face, Optimization

J. Pan, D. Sun, H. Pfister and M. Yang, "Deblurring Images via Dark Channel Prior," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 40, no. 10, pp. 2315-2328, 2018.
181 ms
(Ver 3.3 (11022016))