The Community for Technology Leaders
Green Image
Issue No. 04 - April (2017 vol. 39)
ISSN: 0162-8828
pp: 664-676
Andrej Karpathy , Computer Science Department, Stanford University, Stanford, CA
Li Fei-Fei , Computer Science Department, Stanford University, Stanford, CA
We present a model that generates natural language descriptions of images and their regions. Our approach leverages datasets of images and their sentence descriptions to learn about the inter-modal correspondences between language and visual data. Our alignment model is based on a novel combination of Convolutional Neural Networks over image regions, bidirectional Recurrent Neural Networks (RNN) over sentences, and a structured objective that aligns the two modalities through a multimodal embedding. We then describe a Multimodal Recurrent Neural Network architecture that uses the inferred alignments to learn to generate novel descriptions of image regions. We demonstrate that our alignment model produces state of the art results in retrieval experiments on Flickr8K, Flickr30K and MSCOCO datasets. We then show that the generated descriptions outperform retrieval baselines on both full images and on a new dataset of region-level annotations. Finally, we conduct large-scale analysis of our RNN language model on the Visual Genome dataset of 4.1 million captions and highlight the differences between image and region-level caption statistics.
Visualization, Recurrent neural networks, Context, Image segmentation, Analytical models, Natural languages

A. Karpathy and L. Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 39, no. 4, pp. 664-676, 2017.
95 ms
(Ver 3.3 (11022016))