The Community for Technology Leaders
Green Image
Issue No. 12 - Dec. (2013 vol. 35)
ISSN: 0162-8828
pp: 3066-3072
Christopher Thorpe , Dept. of Comput. & Inf. Sci., Univ. of Delaware, Newark, DE, USA
Feng Li , Qualcomm Technol., Inc., San Diego, CA, USA
Zijia Li , Doctoral Program Comput. Math., Johannes Kepler Univ., Linz, Austria
Zhan Yu , Dept. of Comput. & Inf. Sci., Univ. of Delaware, Newark, DE, USA
David Saunders , Dept. of Comput. & Inf. Sci., Univ. of Delaware, Newark, DE, USA
Jingyi Yu , Dept. of Comput. & Inf. Sci., Univ. of Delaware, Newark, DE, USA
ABSTRACT
This paper presents a novel coprime blurred pair (CBP) model to improve data security in camera surveillance. While most previous approaches have focused on completely encrypting the video stream, we introduce a spatial encryption scheme by strategically blurring the image/video contents. Specifically, we form a public stream and a private stream by blurring the original video data using two different kernels. Each blurred stream will provide the user who has lower clearance less access to personally identifiable details while still allowing behavior to be monitored. If the behavior is recognized as suspicious, a supervisor can use both streams to deblur the contents. Our approach is based on a new CBP theory where the two kernels are coprime when mapped to bivariate polynomials in the z domain. We show that coprimality can be derived in terms of the rank of Bézout matrix formed by sampled polynomials, and we present an efficient algorithm to factor the Bézout matrix for recovering the latent image. To make our solution practical, we implement our decryption scheme on a graphics processing unit (GPU) to achieve real-time performance. Extensive experiments demonstrate that our new scheme can effectively protect sensitive identity information in surveillance videos and faithfully reconstruct the unblurred video stream when both CBP sequences are available.
INDEX TERMS
Streaming media, Cameras, Surveillance, Graphics processing units, Visualization, Discrete Fourier transforms,CUDA, Video surveillance, greatest common divisor, image deblurring, visual cryptography
CITATION
Christopher Thorpe, Feng Li, Zijia Li, Zhan Yu, David Saunders, Jingyi Yu, "A Coprime Blur Scheme for Data Security in Video Surveillance", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 35, no. , pp. 3066-3072, Dec. 2013, doi:10.1109/TPAMI.2013.161
190 ms
(Ver )