The Community for Technology Leaders
Green Image
Issue No. 10 - Oct. (2013 vol. 35)
ISSN: 0162-8828
pp: 2539-2545
Dongbo Min , Adv. Digital Sci. Center, Singapore, Singapore
Jiangbo Lu , Adv. Digital Sci. Center, Singapore, Singapore
M. N. Do , 115 Coordinated Sci. Lab., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
This paper presents a novel method for performing efficient cost aggregation in stereo matching. The cost aggregation problem is reformulated from the perspective of a histogram, giving us the potential to reduce the complexity of the cost aggregation in stereo matching significantly. Differently from previous methods which have tried to reduce the complexity in terms of the size of an image and a matching window, our approach focuses on reducing the computational redundancy that exists among the search range, caused by a repeated filtering for all the hypotheses. Moreover, we also reduce the complexity of the window-based filtering through an efficient sampling scheme inside the matching window. The tradeoff between accuracy and complexity is extensively investigated by varying the parameters used in the proposed method. Experimental results show that the proposed method provides high-quality disparity maps with low complexity and outperforms existing local methods. This paper also provides new insights into complexity-constrained stereo-matching algorithm design.
Complexity theory, Joints, Accuracy, Image color analysis, Histograms, Redundancy

Dongbo Min, Jiangbo Lu and M. N. Do, "Joint Histogram-Based Cost Aggregation for Stereo Matching," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 35, no. 10, pp. 2539-2545, 2013.
235 ms
(Ver 3.3 (11022016))