The Community for Technology Leaders
Green Image
Issue No. 07 - July (2013 vol. 35)
ISSN: 0162-8828
pp: 1577-1591
Wongun Choi , Dept. of Electr. & Comput. Eng., Univ. of Michigan, Ann Arbor, MI, USA
C. Pantofaru , Willow Garage, Inc., Menlo Park, CA, USA
S. Savarese , Dept. of Electr. & Comput. Eng., Univ. of Michigan, Ann Arbor, MI, USA
In this paper, we present a general framework for tracking multiple, possibly interacting, people from a mobile vision platform. To determine all of the trajectories robustly and in a 3D coordinate system, we estimate both the camera's ego-motion and the people's paths within a single coherent framework. The tracking problem is framed as finding the MAP solution of a posterior probability, and is solved using the reversible jump Markov chain Monte Carlo (RJ-MCMC) particle filtering method. We evaluate our system on challenging datasets taken from moving cameras, including an outdoor street scene video dataset, as well as an indoor RGB-D dataset collected in an office. Experimental evidence shows that the proposed method can robustly estimate a camera's motion from dynamic scenes and stably track people who are moving independently or interacting.
Cameras, Target tracking, Detectors, Face, Skin, Trajectory

Wongun Choi, C. Pantofaru and S. Savarese, "A General Framework for Tracking Multiple People from a Moving Camera," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 35, no. 7, pp. 1577-1591, 2013.
180 ms
(Ver 3.3 (11022016))