The Community for Technology Leaders
Green Image
Issue No. 04 - April (2013 vol. 35)
ISSN: 0162-8828
pp: 1011-1024
Junseok Kwon , Dept. of Electr. Eng. & Comput. Sci., Seoul Nat. Univ., Seoul, South Korea
Kyoung Mu Lee , Dept. of Electr. Eng. & Comput. Sci., Seoul Nat. Univ., Seoul, South Korea
ABSTRACT
We propose a novel tracking algorithm based on the Wang-Landau Monte Carlo (WLMC) sampling method for dealing with abrupt motions efficiently. Abrupt motions cause conventional tracking methods to fail because they violate the motion smoothness constraint. To address this problem, we introduce the Wang-Landau sampling method and integrate it into a Markov Chain Monte Carlo (MCMC)-based tracking framework. By employing the novel density-of-states term estimated by the Wang-Landau sampling method into the acceptance ratio of MCMC, our WLMC-based tracking method alleviates the motion smoothness constraint and robustly tracks the abrupt motions. Meanwhile, the marginal likelihood term of the acceptance ratio preserves the accuracy in tracking smooth motions. The method is then extended to obtain good performance in terms of scalability, even on a high-dimensional state space. Hence, it covers drastic changes in not only position but also scale of a target. To achieve this, we modify our method by combining it with the N-fold way algorithm and present the N-Fold Wang-Landau (NFWL)-based tracking method. The N-fold way algorithm helps estimate the density-of-states with a smaller number of samples. Experimental results demonstrate that our approach efficiently samples the states of the target, even in a whole state space, without loss of time, and tracks the target accurately and robustly when position and scale are changing severely.
INDEX TERMS
Target tracking, Proposals, Monte Carlo methods, Sampling methods, Markov processes, Robustness,Markov Chain Monte Carlo, Object tracking, abrupt motion, Wang-Landau method, density-of-states, N-fold way
CITATION
Junseok Kwon, Kyoung Mu Lee, "Wang-Landau Monte Carlo-Based Tracking Methods for Abrupt Motions", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 35, no. , pp. 1011-1024, April 2013, doi:10.1109/TPAMI.2012.161
221 ms
(Ver )