The Community for Technology Leaders
Green Image
Issue No. 07 - July (2012 vol. 34)
ISSN: 0162-8828
pp: 1409-1422
Zdenek Kalal , University of Surrey, Guildford
Jiri Matas , Czech Technical University, Prague
Krystian Mikolajczyk , University of Surrey, Guildford
This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and extent in a single frame. In every frame that follows, the task is to determine the object's location and extent or indicate that the object is not present. We propose a novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so far and corrects the tracker if necessary. The learning estimates the detector's errors and updates it to avoid these errors in the future. We study how to identify the detector's errors and learn from them. We develop a novel learning method (P-N learning) which estimates the errors by a pair of “experts”: 1) P-expert estimates missed detections, and 2) N-expert estimates false alarms. The learning process is modeled as a discrete dynamical system and the conditions under which the learning guarantees improvement are found. We describe our real-time implementation of the TLD framework and the P-N learning. We carry out an extensive quantitative evaluation which shows a significant improvement over state-of-the-art approaches.
Long-term tracking, learning from video, bootstrapping, real time, semi-supervised learning.
Zdenek Kalal, Jiri Matas, Krystian Mikolajczyk, "Tracking-Learning-Detection", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 34, no. , pp. 1409-1422, July 2012, doi:10.1109/TPAMI.2011.239
233 ms
(Ver 3.3 (11022016))