The Community for Technology Leaders
Green Image
Issue No. 04 - April (2012 vol. 34)
ISSN: 0162-8828
pp: 683-694
Sing Bing Kang , Microsoft Res., Redmond, WA, USA
N. Joshi , Microsoft Res., Redmond, WA, USA
C. L. Zitnick , Microsoft Res., Redmond, WA, USA
Taeg Sang Cho , WilmerHale, LLP, Boston, MA, USA
R. Szeliski , Microsoft Res., Redmond, WA, USA
W. T. Freeman , Massachusetts Inst. of Technol., Cambridge, MA, USA
The restoration of a blurry or noisy image is commonly performed with a MAP estimator, which maximizes a posterior probability to reconstruct a clean image from a degraded image. A MAP estimator, when used with a sparse gradient image prior, reconstructs piecewise smooth images and typically removes textures that are important for visual realism. We present an alternative deconvolution method called iterative distribution reweighting (IDR) which imposes a global constraint on gradients so that a reconstructed image should have a gradient distribution similar to a reference distribution. In natural images, a reference distribution not only varies from one image to another, but also within an image depending on texture. We estimate a reference distribution directly from an input image for each texture segment. Our algorithm is able to restore rich mid-frequency textures. A large-scale user study supports the conclusion that our algorithm improves the visual realism of reconstructed images compared to those of MAP estimators.
maximum likelihood estimation, deconvolution, image restoration, image texture, iterative methods, reference distribution, image restoration, gradient distribution matching, blurry image, noisy image, MAP estimator, maximum a priori estimator, posterior probability, sparse gradient image prior, piecewise smooth image, image texture, visual realism, deconvolution method, iterative distribution reweighting method, Image reconstruction, Image restoration, Noise, Deconvolution, Kernel, Cost function, Gaussian distribution, image denoising., Nonblind deconvolution, image prior, image deblurring
Sing Bing Kang, N. Joshi, C. L. Zitnick, Taeg Sang Cho, R. Szeliski, W. T. Freeman, "Image Restoration by Matching Gradient Distributions", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 34, no. , pp. 683-694, April 2012, doi:10.1109/TPAMI.2011.166
89 ms
(Ver 3.3 (11022016))