The Community for Technology Leaders
Green Image
Issue No. 04 - April (2012 vol. 34)
ISSN: 0162-8828
pp: 778-790
L. Sigal , Disney Res., Pittsburgh, PA, USA
R. Memisevic , Dept. of Comput. Sci., Univ. of Frankfurt, Frankfurt, Germany
D. J. Fleet , Dept. of Comput. Sci., Univ. of Toronto, Toronto, ON, Canada
Latent variable models, such as the GPLVM and related methods, help mitigate overfitting when learning from small or moderately sized training sets. Nevertheless, existing methods suffer from several problems: 1) complexity, 2) the lack of explicit mappings to and from the latent space, 3) an inability to cope with multimodality, and 4) the lack of a well-defined density over the latent space. We propose an LVM called the Kernel Information Embedding (KIE) that defines a coherent joint density over the input and a learned latent space. Learning is quadratic, and it works well on small data sets. We also introduce a generalization, the shared KIE (sKIE), that allows us to model multiple input spaces (e.g., image features and poses) using a single, shared latent representation. KIE and sKIE permit missing data during inference and partially labeled data during learning. We show that with data sets too large to learn a coherent global model, one can use the sKIE to learn local online models. We use sKIE for human pose inference.
pose estimation, operating system kernels, human pose inference, shared kernel information embedding, discriminative inference, latent variable models, latent space, coherent joint density, Kernel, Manifolds, Training, Bandwidth, Data models, Estimation, Probabilistic logic, mutual information., Latent variable models, kernel information embedding, inference, nonparametric

L. Sigal, R. Memisevic and D. J. Fleet, "Shared Kernel Information Embedding for Discriminative Inference," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 34, no. , pp. 778-790, 2012.
92 ms
(Ver 3.3 (11022016))