The Community for Technology Leaders
Green Image
Issue No. 12 - December (2011 vol. 33)
ISSN: 0162-8828
pp: 2521-2537
Maja Stikic , Advanced Brain Monitoring, Inc., Carlsbad
Diane Larlus , Xerox Research Centre Europe, Grenoble
Sandra Ebert , Max-Planck-Institut for Computer Science, Saarbrücken
Bernt Schiele , Max-Planck-Institut for Computer Science, Saarbrücken
This paper considers scalable and unobtrusive activity recognition using on-body sensing for context awareness in wearable computing. Common methods for activity recognition rely on supervised learning requiring substantial amounts of labeled training data. Obtaining accurate and detailed annotations of activities is challenging, preventing the applicability of these approaches in real-world settings. This paper proposes new annotation strategies that substantially reduce the required amount of annotation. We explore two learning schemes for activity recognition that effectively leverage such sparsely labeled data together with more easily obtainable unlabeled data. Experimental results on two public data sets indicate that both approaches obtain results close to fully supervised techniques. The proposed methods are robust to the presence of erroneous labels occurring in real-world annotation data.
Wearable computing, activity recognition, wearable sensing, semi-supervised learning.

S. Ebert, B. Schiele, D. Larlus and M. Stikic, "Weakly Supervised Recognition of Daily Life Activities with Wearable Sensors," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 33, no. , pp. 2521-2537, 2011.
86 ms
(Ver 3.3 (11022016))