The Community for Technology Leaders
Green Image
Issue No. 08 - August (2011 vol. 33)
ISSN: 0162-8828
pp: 1548-1560
Deng Cai , Zhejiang University, Hangzhou
Xiaofei He , Zhejiang University, Hangzhou
Jiawei Han , University of Illinois at Urbana-Champaign, Urbana
Thomas S. Huang , University of Illinois at Urbana-Champaign, Urbana
Matrix factorization techniques have been frequently applied in information retrieval, computer vision, and pattern recognition. Among them, Nonnegative Matrix Factorization (NMF) has received considerable attention due to its psychological and physiological interpretation of naturally occurring data whose representation may be parts based in the human brain. On the other hand, from the geometric perspective, the data is usually sampled from a low-dimensional manifold embedded in a high-dimensional ambient space. One then hopes to find a compact representation,which uncovers the hidden semantics and simultaneously respects the intrinsic geometric structure. In this paper, we propose a novel algorithm, called Graph Regularized Nonnegative Matrix Factorization (GNMF), for this purpose. In GNMF, an affinity graph is constructed to encode the geometrical information and we seek a matrix factorization, which respects the graph structure. Our empirical study shows encouraging results of the proposed algorithm in comparison to the state-of-the-art algorithms on real-world problems.
Nonnegative matrix factorization, graph Laplacian, manifold regularization, clustering.

X. He, T. S. Huang, D. Cai and J. Han, "Graph Regularized Nonnegative Matrix Factorization for Data Representation," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 33, no. , pp. 1548-1560, 2010.
86 ms
(Ver 3.3 (11022016))