The Community for Technology Leaders
Green Image
Issue No. 06 - June (2011 vol. 33)
ISSN: 0162-8828
pp: 1250-1265
Larry S. Davis , University of Maryland, College Park
David Harwood , University of Maryland, College Park
Aniruddha Kembhavi , Microsoft Corporation, Redmond
Detecting vehicles in aerial images has a wide range of applications, from urban planning to visual surveillance. We describe a vehicle detector that improves upon previous approaches by incorporating a very large and rich set of image descriptors. A new feature set called Color Probability Maps is used to capture the color statistics of vehicles and their surroundings, along with the Histograms of Oriented Gradients feature and a simple yet powerful image descriptor that captures the structural characteristics of objects named Pairs of Pixels. The combination of these features leads to an extremely high-dimensional feature set (approximately 70,000 elements). Partial Least Squares is first used to project the data onto a much lower dimensional subspace. Then, a powerful feature selection analysis is employed to improve the performance while vastly reducing the number of features that must be calculated. We compare our system to previous approaches on two challenging data sets and show superior performance.
Vehicle detection, partial least squares, feature selection.
Larry S. Davis, David Harwood, Aniruddha Kembhavi, "Vehicle Detection Using Partial Least Squares", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 33, no. , pp. 1250-1265, June 2011, doi:10.1109/TPAMI.2010.182
109 ms
(Ver 3.1 (10032016))