The Community for Technology Leaders
Green Image
Issue No. 06 - June (2011 vol. 33)
ISSN: 0162-8828
pp: 1189-1201
Yuhua Li , University of Ulster, Londonderry
Liam Maguire , University of Ulster, Londonderry
Pattern selection methods have been traditionally developed with a dependency on a specific classifier. In contrast, this paper presents a method that selects critical patterns deemed to carry essential information applicable to train those types of classifiers which require spatial information of the training data set. Critical patterns include those edge patterns that define the boundary and those border patterns that separate classes. The proposed method selects patterns from a new perspective, primarily based on their location in input space. It determines class edge patterns with the assistance of the approximated tangent hyperplane of a class surface. It also identifies border patterns between classes using local probability. The proposed method is evaluated on benchmark problems using popular classifiers, including multilayer perceptrons, radial basis functions, support vector machines, and nearest neighbors. The proposed approach is also compared with four state-of-the-art approaches and it is shown to provide similar but more consistent accuracy from a reduced data set. Experimental results demonstrate that it selects patterns sufficient to represent class boundary and to preserve the decision surface.
Pattern selection, data reduction, border pattern, edge pattern.

L. Maguire and Y. Li, "Selecting Critical Patterns Based on Local Geometrical and Statistical Information," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 33, no. , pp. 1189-1201, 2010.
81 ms
(Ver 3.3 (11022016))