The Community for Technology Leaders
Green Image
Issue No. 05 - May (2011 vol. 33)
ISSN: 0162-8828
pp: 958-977
Jun Zhou , National ICT Australia, Canberra Research Laboratory, Canberra and Australian National University
Zhouyu Fu , Monash University, Victoria
Antonio Robles-Kelly , National ICT Australia, Canberra Research Laboratory, Canberra and Australian National University
ABSTRACT
Multiple instance learning (MIL) is a paradigm in supervised learning that deals with the classification of collections of instances called bags. Each bag contains a number of instances from which features are extracted. The complexity of MIL is largely dependent on the number of instances in the training data set. Since we are usually confronted with a large instance space even for moderately sized real-world data sets applications, it is important to design efficient instance selection techniques to speed up the training process without compromising the performance. In this paper, we address the issue of instance selection in MIL. We propose MILIS, a novel MIL algorithm based on adaptive instance selection. We do this in an alternating optimization framework by intertwining the steps of instance selection and classifier learning in an iterative manner which is guaranteed to converge. Initial instance selection is achieved by a simple yet effective kernel density estimator on the negative instances. Experimental results demonstrate the utility and efficiency of the proposed approach as compared to the state of the art.
INDEX TERMS
Multiple instance learning, support vector machine, feature selection, alternating optimization.
CITATION
Jun Zhou, Zhouyu Fu, Antonio Robles-Kelly, "MILIS: Multiple Instance Learning with Instance Selection", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 33, no. , pp. 958-977, May 2011, doi:10.1109/TPAMI.2010.155
97 ms
(Ver 3.1 (10032016))