The Community for Technology Leaders
Green Image
Issue No. 05 - May (2011 vol. 33)
ISSN: 0162-8828
pp: 883-897
Richard Bowden , University of Surrey, Guildford
Andrew Gilbert , University of Surrey, Guildford
John Illingworth , University of Surrey, Guildford
The field of Action Recognition has seen a large increase in activity in recent years. Much of the progress has been through incorporating ideas from single-frame object recognition and adapting them for temporal-based action recognition. Inspired by the success of interest points in the 2D spatial domain, their 3D (space-time) counterparts typically form the basic components used to describe actions, and in action recognition the features used are often engineered to fire sparsely. This is to ensure that the problem is tractable; however, this can sacrifice recognition accuracy as it cannot be assumed that the optimum features in terms of class discrimination are obtained from this approach. In contrast, we propose to initially use an overcomplete set of simple 2D corners in both space and time. These are grouped spatially and temporally using a hierarchical process, with an increasing search area. At each stage of the hierarchy, the most distinctive and descriptive features are learned efficiently through data mining. This allows large amounts of data to be searched for frequently reoccurring patterns of features. At each level of the hierarchy, the mined compound features become more complex, discriminative, and sparse. This results in fast, accurate recognition with real-time performance on high-resolution video. As the compound features are constructed and selected based upon their ability to discriminate, their speed and accuracy increase at each level of the hierarchy. The approach is tested on four state-of-the-art data sets, the popular KTH data set to provide a comparison with other state-of-the-art approaches, the Multi-KTH data set to illustrate performance at simultaneous multiaction classification, despite no explicit localization information provided during training. Finally, the recent Hollywood and Hollywood2 data sets provide challenging complex actions taken from commercial movie sequences. For all four data sets, the proposed hierarchical approach outperforms all other methods reported thus far in the literature and can achieve real-time operation.
Action recognition, data mining, real-time, learning, spatiotemporal.
Richard Bowden, Andrew Gilbert, John Illingworth, "Action Recognition Using Mined Hierarchical Compound Features", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 33, no. , pp. 883-897, May 2011, doi:10.1109/TPAMI.2010.144
93 ms
(Ver 3.1 (10032016))