The Community for Technology Leaders
Green Image
Issue No. 04 - April (2011 vol. 33)
ISSN: 0162-8828
pp: 858-864
José M. Buenaposada , Universidad Rey Juan Carlos, Móstoles
Juan Bekios-Calfa , Universidad Católica del Norte, Antofagasta
Luis Baumela , Universidad Politécnica de Madrid, Boadilla del Monte
Emerging applications of computer vision and pattern recognition in mobile devices and networked computing require the development of resource-limited algorithms. Linear classification techniques have an important role to play in this context, given their simplicity and low computational requirements. The paper reviews the state-of-the-art in gender classification, giving special attention to linear techniques and their relations. It discusses why linear techniques are not achieving competitive results and shows how to obtain state-of-the-art performances. Our work confirms previous results reporting very close classification accuracies for Support Vector Machines (SVMs) and boosting algorithms on single-database experiments. We have proven that Linear Discriminant Analysis on a linearly selected set of features also achieves similar accuracies. We perform cross-database experiments and prove that single database experiments were optimistically biased. If enough training data and computational resources are available, SVM's gender classifiers are superior to the rest. When computational resources are scarce but there is enough data, boosting or linear approaches are adequate. Finally, if training data and computational resources are very scarce, then the linear approach is the best choice.
Computer vision, gender classification, Fisher linear discriminant analysis.
José M. Buenaposada, Juan Bekios-Calfa, Luis Baumela, "Revisiting Linear Discriminant Techniques in Gender Recognition", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 33, no. , pp. 858-864, April 2011, doi:10.1109/TPAMI.2010.208
47 ms
(Ver 3.3 (11022016))