The Community for Technology Leaders
Green Image
Issue No. 03 - March (2011 vol. 33)
ISSN: 0162-8828
pp: 639-646
Brendan F. Klare , Michigan State University, East Lansing
Zhifeng Li , Michigan State University, East Lansing
Anil K. Jain , Michigan State University, East Lansing and Korea University, Seoul
ABSTRACT
The problem of matching a forensic sketch to a gallery of mug shot images is addressed in this paper. Previous research in sketch matching only offered solutions to matching highly accurate sketches that were drawn while looking at the subject (viewed sketches). Forensic sketches differ from viewed sketches in that they are drawn by a police sketch artist using the description of the subject provided by an eyewitness. To identify forensic sketches, we present a framework called local feature-based discriminant analysis (LFDA). In LFDA, we individually represent both sketches and photos using SIFT feature descriptors and multiscale local binary patterns (MLBP). Multiple discriminant projections are then used on partitioned vectors of the feature-based representation for minimum distance matching. We apply this method to match a data set of 159 forensic sketches against a mug shot gallery containing 10,159 images. Compared to a leading commercial face recognition system, LFDA offers substantial improvements in matching forensic sketches to the corresponding face images. We were able to further improve the matching performance using race and gender information to reduce the target gallery size. Additional experiments demonstrate that the proposed framework leads to state-of-the-art accuracys when matching viewed sketches.
INDEX TERMS
Face recognition, forensic sketch, viewed sketch, local feature discriminant analysis, feature selection, heterogeneous face recognition.
CITATION
Brendan F. Klare, Zhifeng Li, Anil K. Jain, "Matching Forensic Sketches to Mug Shot Photos", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 33, no. , pp. 639-646, March 2011, doi:10.1109/TPAMI.2010.180
85 ms
(Ver )