The Community for Technology Leaders
Green Image
Issue No. 01 - January (2011 vol. 33)
ISSN: 0162-8828
pp: 16-29
Frederic Lehmann , Institut TELECOM, TELECOM SudParis, Evry
We consider the problem of semi-supervised segmentation of textured images. Existing model-based approaches model the intensity field of textured images as a Gauss-Markov random field to take into account the local spatial dependencies between the pixels. Classical Bayesian segmentation consists of also modeling the label field as a Markov random field to ensure that neighboring pixels correspond to the same texture class with high probability. Well-known relaxation techniques are available which find the optimal label field with respect to the maximum a posteriori or the maximum posterior mode criterion. But, these techniques are usually computationally intensive because they require a large number of iterations to converge. In this paper, we propose a new Bayesian framework by modeling two-dimensional textured images as the concatenation of two one-dimensional hidden Markov autoregressive models for the lines and the columns, respectively. A segmentation algorithm, which is similar to turbo decoding in the context of error-correcting codes, is obtained based on a factor graph approach. The proposed method estimates the unknown parameters using the Expectation-Maximization algorithm.
Texture segmentation, Markov random field, hidden Markov autoregressive model, factor graph, forward-backward algorithm, turbo processing.

F. Lehmann, "Turbo Segmentation of Textured Images," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 33, no. , pp. 16-29, 2010.
91 ms
(Ver 3.3 (11022016))