The Community for Technology Leaders
Green Image
Issue No. 11 - November (2010 vol. 32)
ISSN: 0162-8828
pp: 1977-1993
Amandine Robin , University of the Witwatersrand, South Africa
Lionel Moisan , Universite Paris-Descartes (MAP5), Paris
Sylvie Le Hégarat-Mascle , Universite Paris Sud Orsay, Orsay
This paper presents a new method for unsupervised subpixel change detection using image series. The method is based on the definition of a probabilistic criterion capable of assessing the level of coherence of an image series relative to a reference classification with a finer resolution. In opposition to approaches based on an a priori model of the data, the model developed here is based on the rejection of a nonstructured model—called a-contrario model—by the observation of structured data. This coherence measure is the core of a stochastic algorithm which automatically selects the image subdomain representing the most likely changes. A theoretical analysis of this model is led to predict its performances, in particular regarding the contrast level of the image as well as the number of change pixels in the image. Numerical simulations are also presented that confirm the high robustness of the method and its capacity to detect changes impacting more than 25 percent of a considered pixel under average conditions. An application to land-cover change detection is then provided using time series of satellite images.
Change detection, a-contrario modeling, significance test, subpixel, mixture model, image series.

L. Moisan, S. Le Hégarat-Mascle and A. Robin, "An A-Contrario Approach for Subpixel Change Detection in Satellite Imagery," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 32, no. , pp. 1977-1993, 2010.
89 ms
(Ver 3.3 (11022016))