The Community for Technology Leaders
Green Image
Issue No. 10 - October (2010 vol. 32)
ISSN: 0162-8828
pp: 1809-1821
Tinne Tuytelaars , K.U. Leuven ESAT-PSI, Leuven
Alex J. Smola , Yahoo! Research, Santa Clara
Le Song , Carnegie Mellon University, Pittsburgh
Novi Quadrianto , Australian National University and NICTA, Canberra
Object matching is a fundamental operation in data analysis. It typically requires the definition of a similarity measure between the classes of objects to be matched. Instead, we develop an approach which is able to perform matching by requiring a similarity measure only within each of the classes. This is achieved by maximizing the dependency between matched pairs of observations by means of the Hilbert-Schmidt Independence Criterion. This problem can be cast as one of maximizing a quadratic assignment problem with special structure and we present a simple algorithm for finding a locally optimal solution.
Sorting, matching, kernels, object alignment, Hilbert-Schmidt Independence Criterion.
Tinne Tuytelaars, Alex J. Smola, Le Song, Novi Quadrianto, "Kernelized Sorting", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 32, no. , pp. 1809-1821, October 2010, doi:10.1109/TPAMI.2009.184
48 ms
(Ver 3.3 (11022016))