The Community for Technology Leaders
Green Image
Issue No. 07 - July (2010 vol. 32)
ISSN: 0162-8828
pp: 1153-1164
Daniel Cremers , University of Bonn, Bonn
Thomas Schoenemann , University of Bonn, Bonn
ABSTRACT
We propose a combinatorial solution to determine the optimal elastic matching of a deformable template to an image. The central idea is to cast the optimal matching of each template point to a corresponding image pixel as a problem of finding a minimum cost cyclic path in the three-dimensional product space spanned by the template and the input image. We introduce a cost functional associated with each cycle, which consists of three terms: a data fidelity term favoring strong intensity gradients, a shape consistency term favoring similarity of tangent angles of corresponding points, and an elastic penalty for stretching or shrinking. The functional is normalized with respect to the total length to avoid a bias toward shorter curves. Optimization is performed by Lawler's Minimum Ratio Cycle algorithm parallelized on state-of-the-art graphics cards. The algorithm provides the optimal segmentation and point correspondence between template and segmented curve in computation times that are essentially linear in the number of pixels. To the best of our knowledge, this is the only existing globally optimal algorithm for real-time tracking of deformable shapes.
INDEX TERMS
Image segmentation, tracking, elastic shape priors, discrete optimization, dynamic programming, minimum ratio cycles, real-time applications.
CITATION
Daniel Cremers, Thomas Schoenemann, "A Combinatorial Solution for Model-Based Image Segmentation and Real-Time Tracking", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 32, no. , pp. 1153-1164, July 2010, doi:10.1109/TPAMI.2009.79
99 ms
(Ver )