The Community for Technology Leaders
Green Image
Issue No. 02 - February (2010 vol. 32)
ISSN: 0162-8828
pp: 304-320
Flávio L.C. Pádua , Centro Federal de Educação Tecnológica de Minas Gerais , Belo Horizonte
Rodrigo L. Carceroni , Google Inc, Mountain View
Geraldo A.M.R. Santos , Universidade Federal de Minas Gerais, Belo Horizonte
Kiriakos N. Kutulakos , University of Toronto , Toronto
In this paper, we consider the problem of estimating the spatiotemporal alignment between N unsynchronized video sequences of the same dynamic 3D scene, captured from distinct viewpoints. Unlike most existing methods, which work for N=2 and rely on a computationally intensive search in the space of temporal alignments, we present a novel approach that reduces the problem for general N to the robust estimation of a single line in {{\hbox{\rlap{I}\kern 2.0pt{\hbox{R}}}}}^{N}. This line captures all temporal relations between the sequences and can be computed without any prior knowledge of these relations. Considering that the spatial alignment is captured by the parameters of fundamental matrices, an iterative algorithm is used to refine simultaneously the parameters representing the temporal and spatial relations between the sequences. Experimental results with real-world and synthetic sequences show that our method can accurately align the videos even when they have large misalignments (e.g., hundreds of frames), when the problem is seemingly ambiguous (e.g., scenes with roughly periodic motion), and when accurate manual alignment is difficult (e.g., due to slow-moving objects).
Video synchronization, object tracking, epipolar geometry, spatiotemporal alignment, image and video registration.

F. L. Pádua, R. L. Carceroni, G. A. Santos and K. N. Kutulakos, "Linear Sequence-to-Sequence Alignment," in IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 32, no. , pp. 304-320, 2008.
89 ms
(Ver 3.3 (11022016))