The Community for Technology Leaders
Green Image
Issue No. 11 - November (2009 vol. 31)
ISSN: 0162-8828
pp: 2032-2047
Manik Varma , Microsoft Research, Bangalore
Andrew Zisserman , University of Oxford, Oxford
ABSTRACT
In this paper, we investigate material classification from single images obtained under unknown viewpoint and illumination. It is demonstrated that materials can be classified using the joint distribution of intensity values over extremely compact neighborhoods (starting from as small as 3 \times 3 pixels square) and that this can outperform classification using filter banks with large support. It is also shown that the performance of filter banks is inferior to that of image patches with equivalent neighborhoods. We develop novel texton-based representations which are suited to modeling this joint neighborhood distribution for Markov random fields. The representations are learned from training images and then used to classify novel images (with unknown viewpoint and lighting) into texture classes. Three such representations are proposed and their performance is assessed and compared to that of filter banks. The power of the method is demonstrated by classifying 2,806 images of all 61 materials present in the Columbia-Utrecht database. The classification performance surpasses that of recent state-of-the-art filter bank-based classifiers such as Leung and Malik (IJCV 01), Cula and Dana (IJCV 04), and Varma and Zisserman (IJCV 05). We also benchmark performance by classifying all of the textures present in the UIUC, Microsoft Textile, and San Francisco outdoor data sets. We conclude with discussions on why features based on compact neighborhoods can correctly discriminate between textures with large global structure and why the performance of filter banks is not superior to that of the source image patches from which they were derived.
INDEX TERMS
Material classification, 3D textures, textons, image patches, filter banks.
CITATION
Manik Varma, Andrew Zisserman, "A Statistical Approach to Material Classification Using Image Patch Exemplars", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 31, no. , pp. 2032-2047, November 2009, doi:10.1109/TPAMI.2008.182
95 ms
(Ver )